1. (27 points) The following two problems are not related.
(a) Suppose that A and B are constants. Find the derivative of $h(x)=\frac{A \sin (x)}{x}+\tan (B x)$. (Please do not simplify your final answer.)
(b) Consider $s(x)=\sqrt{x^{2}+1} \cdot \cos x$.
i. Find the value of $s^{\prime}\left(\frac{\pi}{2}\right)$.
ii. Find the formula for the linearization of $y=s(x)$ at $a=\frac{\pi}{2}$. (Please do not simplify your final answer. Your final answer will be in terms of π.)
iii. Use your linearization from (ii) to approximate $s\left(\frac{3}{2}\right)$. (Please do not simplify your final answer. Your final answer will be in terms of π.)

Solution:

(a) Using the quotient rule on the first term, and the chain rule on the second term, gives

$$
\begin{aligned}
h^{\prime}(x) & =\frac{x(A \cos x)-(A \sin x)(1)}{x^{2}}+B \sec ^{2}(B x) \\
& =\frac{A(x \cos x-\sin x)}{x^{2}}+B \sec ^{2}(B x)
\end{aligned}
$$

(b) i. Taking the derivative, we find that

$$
\begin{aligned}
s^{\prime}(x) & =\left(\sqrt{x^{2}+1}\right)^{\prime} \cos x+\left(\sqrt{x^{2}+1}\right)(\cos x)^{\prime} \\
& =\left(2 x \cdot \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}\right) \cos x+\sqrt{x^{2}+1}(-\sin x) \\
& =\frac{x \cos x}{\sqrt{x^{2}+1}}-\sqrt{x^{2}+1} \cdot \sin x .
\end{aligned}
$$

Evaluating the derivative at $x=\pi / 2$ yields

$$
\begin{aligned}
s^{\prime}\left(\frac{\pi}{2}\right) & =\frac{(\pi / 2) \cos (\pi / 2)}{\sqrt{(\pi / 2)^{2}+1}}-\sqrt{(\pi / 2)^{2}+1} \cdot \sin (\pi / 2) \\
& =-\frac{\sqrt{\pi^{2}+4}}{2}
\end{aligned}
$$

ii. The linearization (tangent line) is given by

$$
\begin{aligned}
L(x) & =s\left(\frac{\pi}{2}\right)+s^{\prime}\left(\frac{\pi}{2}\right)\left(x-\frac{\pi}{2}\right) \\
& =-\frac{\sqrt{\pi^{2}+4}}{2}\left(x-\frac{\pi}{2}\right) .
\end{aligned}
$$

iii. We have that $s(x) \approx L(x)$ for x "near" $\frac{\pi}{2}$. So, we have

$$
\begin{aligned}
& s\left(\frac{3}{2}\right) \approx L\left(\frac{3}{2}\right) \\
& s\left(\frac{3}{2}\right) \approx-\frac{\sqrt{\pi^{2}+4}}{2}\left(\frac{3-\pi}{2}\right) .
\end{aligned}
$$

2. (16 points) Consider the curve defined by $8 x+2 x y+y^{3}=11$. Complete the following.
(a) Find y^{\prime} at the point $(1,1)$.
(b) Find $y^{\prime \prime}$ at the point $(1,1)$.

Solution:

(a) We start by using implicit differentiation on the equation of the curve:

$$
8+2\left(x y^{\prime}+y\right)+3 y^{2} y^{\prime}=0
$$

Next, we substitute $x=1$ and $y=1$, and then solve for y^{\prime} :

$$
\begin{gathered}
8+2\left(y^{\prime}+1\right)+3 y^{\prime}=0 \\
5 y^{\prime}+10=0 \\
y^{\prime}=-2
\end{gathered}
$$

(b) We must use implicit differentiation once more to get an equation with $y^{\prime \prime}$.

$$
\begin{aligned}
\frac{d}{d x}\left(8+2\left(x y^{\prime}+y\right)+3 y^{2} y^{\prime}\right) & =\frac{d}{d x}(0) \\
2\left(x y^{\prime \prime}+y^{\prime}+y^{\prime}\right)+3\left(y^{2} y^{\prime \prime}+2 y\left(y^{\prime}\right)^{2}\right) & =0
\end{aligned}
$$

Next, we substitute $x=1, y=1$, and $y^{\prime}=-2$ and then solve for $y^{\prime \prime}$:

$$
\begin{aligned}
2\left(y^{\prime \prime}+2(-2)\right)+3\left(y^{\prime \prime}+2(-2)^{2}\right) & =0 \\
y^{\prime \prime} & =-\frac{16}{5}
\end{aligned}
$$

3. (18 pts) Given $f(x)=x^{4 / 3}+4 x^{1 / 3}+4 x^{-2 / 3}$
(a) Determine the x-coordinate(s) for all critical number(s) of f.
(b) Determine the interval(s) where f is decreasing.
(c) Determine the x-coordinate(s) of all local maxima and minima of f. (Clearly indicate which x-coordinates correspond to a local maximum and which correspond to a local minimum.)

Solution:

(a) Note that

$$
f^{\prime}(x)=\frac{4}{3} x^{-5 / 3}\left(x^{2}+x-2\right)=\frac{4(x-1)(x+2)}{3 x^{5 / 3}}
$$

which is zero when $x=-2,1$ and undefined when $x=0 . x=0$ is not in the domain of f, so the only critical points occur at $x=-2,1$.
(b) We see that $f^{\prime}(x)<0$ when x is in $(-\infty,-2) \cup(0,1)$ and $f^{\prime}(x)>0$ when x is in $(-2,0) \cup(1, \infty)$. So, f is decreasing from $(-\infty,-2)$ and $(0,1)$, increasing from $(-2,0)$ and $(1, \infty)$. (We still have to consider the sign of f^{\prime} on both sides of $x=0$).
(c) Applying the first derivative test at the two critical points, we see that f has a local minimum at $x=-2$ and at $x=1$.
4. (13 points) Consider $g(x)=3 \sqrt{4-x}+5$. Use the definition of the derivative to show that $g^{\prime}(x)=\frac{-3}{2 \sqrt{4-x}}$. (Note: You must use the definition of the derivative to earn any credit on this problem.)

Solution:

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(3 \sqrt{4-(x+h)}+5)-(3 \sqrt{4-x}+5)}{h} \\
& =3 \lim _{h \rightarrow 0} \frac{\sqrt{4-x-h}-\sqrt{4-x}}{h} \cdot \frac{\sqrt{4-x-h}+\sqrt{4-x}}{\sqrt{4-x-h}+\sqrt{4-x}} \\
& =3 \lim _{h \rightarrow 0} \frac{(4-x-h)-(4-x)}{h(\sqrt{4-x-h}+\sqrt{4-x})} \\
& =3 \lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{4-x-h}+\sqrt{4-x})} \\
& =3 \lim _{h \rightarrow 0} \frac{-1}{\sqrt{4-x-h}+\sqrt{4-x}} \\
& =\frac{-3}{2 \sqrt{4-x}}
\end{aligned}
$$

5. (13 points) Ralphie is riding his bicycle east away from an intersection at 12 kilometers per hour when he is 2 kilometers east of the intersection. Chip is also riding a bicycle, but he is heading south towards that same intersection at a speed of 17 kilometers per hour when he is 3 kilometers north of the intersection. What is the rate of change of the straight-line distance between Ralphie and Chip at that moment? Include the correct unit of measurement in your answer.

Solution:

First, we label a right triangle that represents the situation. We have
$c=$ distance between Chip and the intersection,
$r=$ distance between the intersection and Ralphie, and
$d=$ distance between Chip and Ralphie.

In order to solve the problem, we want to find d^{\prime} when

$$
\begin{aligned}
c & =3 \text { kilometers, } \\
c^{\prime} & =-17 \text { kilometers per hour, } \\
r & =2 \text { kilometers, and } \\
r^{\prime} & =12 \text { kilometers per hour. }
\end{aligned}
$$

Note that the variables c, r, and d are related via the Pythagorean Theorem:

$$
c^{2}+r^{2}=d^{2}
$$

If we differentiate and then solve for d^{\prime}, we have

$$
d^{\prime}=\frac{c c^{\prime}+r r^{\prime}}{d} .
$$

We can now plug in the values of our variables and rates (derivatives) at that moment. Note that we can use the Pythagorean theorem to determine that

$$
d=\sqrt{c^{2}+r^{2}}=\sqrt{13} \text { kilometers }
$$

at that moment. Thus, we have that the rate of change between Chip and Ralphie at that moment is

$$
d^{\prime}=\frac{3(-17)+2(12)}{\sqrt{13}}=-\frac{27}{\sqrt{13}} \text { kilometers per hour. }
$$

6. (13 points) Suppose that $r(0)=2$ and $r^{\prime}(x) \leq 6$ for all values of x. How large can $r(3)$ possibly be? Correctly use a theorem to justify your answer. (You should state the name of the theorem used and clearly show that its hypotheses are satisfied.)

Solution:

Since f is given as differentiable for all x, it is also continuous everywhere. So, f is continuous on $[0,3]$ and differentiable on $(0,3)$, meaning the Mean Value Theorem applies to f on $[0,3]$ So, there is an x-value c for which $0<c<3$ and

$$
\frac{r(3)-r(0)}{3-0}=r^{\prime}(c) \Longrightarrow r(3)-r(0)=3 r^{\prime}(c) \Longrightarrow r(3)=r(0)+3 r^{\prime}(c)=2+3 r^{\prime}(c) .
$$

But $r^{\prime}(c) \leq 6$ by the given, thus $r(3) \leq 2+3(6)=20$.

