1. (20 points) Problems (a) and (b) are not related.
(a) Determine all solutions of $\sin ^{2}(x)=\sin (2 x)-\sin (x) \cos (x)$ in $[0,2 \pi)$.
(b) If θ is in $[\pi / 2, \pi]$ and $\tan (\theta)=-5 / 8$, evaluate
i. $\sin (\theta)$
ii. $\cos (2 \theta)$

Solution:

(a) $\sin ^{2}(x)=\sin (2 x)-\sin (x) \cos (x)$
$\sin ^{2}(x)=2 \sin (x) \cos (x)-\sin (x) \cos (x)$
$\sin ^{2}(x)=\sin (x) \cos (x)$
$\sin ^{2}(x)-\sin (x) \cos (x)=0$
$\sin (x)(\sin (x)-\cos (x))=0$
So either $\sin (x)=0$ or $(\sin (x)-\cos (x))=0$
$x=0, \frac{\pi}{4}, \pi, \frac{5 \pi}{4}$
(b) We can consider the right triangle in the second quadrant with leg lengths $x=-8$ and $y=5$:
$r^{2}=(-8)^{2}+(5)^{2}=64+25=89$ $r=\sqrt{89}$
i. $\sin (\theta)=\frac{y}{r}=\frac{5}{\sqrt{89}}$.
ii. $\cos (2 \theta)=1-2 \sin ^{2} \theta=1-\frac{50}{89}=\frac{39}{89}$
2. (24 points) Evaluate the following limits and simplify your answers. If a limit does not exist, clearly state this. If you use a theorem, clearly state its name and show that its hypotheses are satisfied.
(Reminder: You may not use L'Hopital's Rule or Dominance of Powers in any solutions on this exam.)
(a) $\lim _{x \rightarrow-2} \frac{\left|x^{2}+5 x+6\right|}{x+2}$
(b) If $4 x^{3}-6 x^{2} \leq f(x) \leq x^{4}-4 x+1$ for all x, evaluate $\lim _{x \rightarrow 1} f(x)$.
(c) $\lim _{y \rightarrow \pi / 4}\left(\frac{1-\tan y}{\sin y-\cos y}\right)$

Solution:

(a) This limit is an $\frac{0}{0}$-indeterminate form, so we do not immediately know its value. Next, we note that $\frac{\left|x^{2}+5 x+6\right|}{x+2}=$ $\frac{|x+2|}{x+2}|x+3|$. Note that $\frac{|x+2|}{x+2}=1$ for $x>-2$ and $\frac{|x+2|}{x+2}=-1$ for $x<-2$. We will use this observation and consider the one-sided limits as x approaches -2 .

$$
\begin{aligned}
\lim _{x \rightarrow-2^{+}} \frac{\left|x^{2}+5 x+6\right|}{x+2} & =\lim _{x \rightarrow-2^{+}} \frac{|x+2|}{x+2}|x+3| \\
& =\lim _{x \rightarrow-2^{+}}|x+3|
\end{aligned}
$$

$$
\begin{aligned}
& =|-2+3| \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-2^{-}} \frac{\left|x^{2}+5 x+6\right|}{x+2} & =\lim _{x \rightarrow-2^{-}} \frac{|x+2|}{x+2}|x+3| \\
& =\lim _{x \rightarrow-2^{-}}-|x+3| \\
& =-|-2+3| \\
& =-1
\end{aligned}
$$

Since the two one-sided limits disagree, then we have shown $\lim _{x \rightarrow-2} \frac{\left|x^{2}+5 x+6\right|}{x+2}$ does not exist.
(b) Since $\lim _{x \rightarrow 1} 4 x^{3}-6 x^{2}=-2$ and $\lim _{x \rightarrow 1} x^{4}-4 x+1=-2$, and since $f(x)$ is between these two functions for all x (as given), by the Squeeze Theorem $\lim _{x \rightarrow 1} f(x)=-2$ as well.
(c) This limit is an $\frac{0}{0}$-indeterminate form, so we do not immediately know its value.

$$
\begin{aligned}
\lim _{y \rightarrow \pi / 4}\left(\frac{1-\tan y}{\sin y-\cos y}\right) & =\lim _{y \rightarrow \pi / 4}\left(\frac{1-\frac{\sin y}{\cos y}}{\sin y-\cos y}\right) \cdot \frac{\cos y}{\cos y} \\
& =\lim _{y \rightarrow \pi / 4}\left(\frac{\cos y-\sin y}{(\sin y-\cos y) \cos y}\right) \\
& =\lim _{y \rightarrow \pi / 4} \frac{-1}{\cos y} \\
& =\frac{-1}{\frac{\sqrt{2}}{2}} \\
& =-\sqrt{2} .
\end{aligned}
$$

3. (12 points) The function $s(x)$ is graphed in its entirety below. It consists of two line segments and a portion of a parabola. Use the graph to answer the questions below. For this problem, no justification is required for your final answers.

(a) What is the domain of $r(x)=\frac{1}{s(x)}$? State your answer using interval notation.
(b) On what interval(s) is $r(x)=\frac{1}{s(x)}$ continuous? State your answer using interval notation.
(c) What is the domain of $v(x)=\sqrt{s(x)}$? State your answer using interval notation.
(d) Provide a complete formula for $s(x)$ as a piecewise-defined function.

Solution:

(a) $[-1,6) \cup(6,8]$
(b) $[-1,4) \cup(4,6) \cup(6,8]$
(c) $[-1,4) \cup[6,8]$
(d)

$$
s(x)= \begin{cases}\frac{2}{3}(x+1)+1 & ,-1 \leq x \leq 2 \\ 2(x-3)^{2}+1 & , 2<x<4 \\ x-6 & , 4 \leq x \leq 8\end{cases}
$$

4. (18 points) Consider the function $g(x)=\frac{\sin x}{x(x-\pi / 2)}$.
(a) Identify all values of x, if any, for which $g(x)$ has a vertical asymptote. Justify your answer by evaluating the appropriate limit(s).
(b) For what value(s) of a is the following piecewise function $h(x)$ continuous at $x=0$? Justify your answer using the definition of continuity.

$$
h(x)= \begin{cases}g(x) & , x \neq 0, \frac{\pi}{2} \\ a & , x=0\end{cases}
$$

Solution:

(a) $\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\sin x}{x(x-\pi / 2)}=-\infty$ because as $x \rightarrow \frac{\pi}{2}^{-}$, we have $\sin x \rightarrow 1$ and $x(x-\pi / 2) \rightarrow 0^{-}$. (That is, the denominator is negative as it approaches 0 .)
$\lim _{x \rightarrow \frac{\pi}{2}^{+}} \frac{\sin x}{x(x-\pi / 2)}=\infty$ because as $x \rightarrow \frac{\pi}{2}^{+}$, we have $\sin x \rightarrow 1$ and $x(x-\pi / 2) \rightarrow 0^{+}$. (That is, the denominator is positive as it approaches 0 .)
Since at least one of the preceding two limits is infinite (in fact, both are infinite for this function), $f(x)$ has a vertical asymptote at $x=\pi / 2$.
(b)

$$
\begin{aligned}
\lim _{x \rightarrow 0} h(x) & =\lim _{x \rightarrow 0} \frac{\sin x}{x(x-\pi / 2)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{(x-\pi / 2)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{(x-\pi / 2)}
\end{aligned}
$$

$$
\begin{aligned}
& =(1)\left(\frac{1}{0-\pi / 2}\right) \\
& =-\frac{2}{\pi}
\end{aligned}
$$

The definition of continuity indicates that in order for $h(x)$ to be continuous at $x=0, \lim _{x \rightarrow 0} h(x)=h(0)$. Since $h(0)=a$, in order for $h(x)$ to be continuous at $x=0$ we must have $a=-2 / \pi$.
5. (16 pts) A major movie studio has found that the function

$$
P(t)=\frac{3 t^{3}-9 t}{\sqrt{4 t^{6}+5 t^{4}+5 t}}
$$

models their profit (in millions of dollars) from a certain movie $t>0$ weeks after it was released.
(a) How many weeks after it is released does the movie studio "break even" on the movie? That is, when does $P(t)=0$ for a realistic value of $t ?$
(b) How much profit does the movie studio make in the long run? In other words, what is $\lim _{t \rightarrow \infty} P(t)$? Use correct units in your final answer.
(Reminder: You may not use L'Hopital's Rule or Dominance of Powers in any solutions on this exam.)

Solution:

(a) We know that $P(t)=0$ when the numerator is equal to zero. Hence, we solve the equation

$$
\begin{aligned}
3 t^{3}-9 t & =0 \\
3 t\left(t^{2}-3\right) & =0 \\
3 t(t-\sqrt{3})(t+\sqrt{3}) & =0 \\
t & =0, \pm \sqrt{3}
\end{aligned}
$$

We only want the positive value here, since this formula models profit t weeks after the movie was released. According to this formula, the movie studio's break-even point was $t=\sqrt{3}$ weeks after the movie was released.
(b) Computing the limit, we have

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{3 t^{3}-9 t}{\sqrt{4 t^{6}+5 t^{4}+5 t}} & =\lim _{t \rightarrow \infty} \frac{t^{3}\left(3-\frac{9}{t^{2}}\right)}{t^{3} \sqrt{4+\frac{5}{t^{2}}+\frac{5}{t^{5}}}} \\
& =\lim _{t \rightarrow \infty} \frac{3-\frac{9}{t^{2}}}{\sqrt{4+\frac{5}{t^{2}}+\frac{5}{t^{5}}}} \\
& =\frac{3-0}{\sqrt{4+0+0}} \\
& =\frac{3}{2}
\end{aligned}
$$

This means that the movie studio expects to make $\$ 1.5$ million in the long-run.
6. (10 points) Correctly use a theorem to determine a closed interval in which $x+\tan x=1$ has a solution. (Be sure to state the name of the theorem that is used and to clearly show that its hypotheses are satisfied.)

Solution:

This equation has a solution if and only if $x+\tan x-1=0$ has a solution. Consider the function $f(x)=$ $x+\tan x-1$. It is sufficient to determine a closed interval where $f(x)=0$. We note that $f(0)=-1$ and $f\left(\frac{\pi}{4}\right)=\frac{\pi}{4}$. Since f is continuous on $\left[0, \frac{\pi}{4}\right]$ and 0 is between $f(0)$ and $f\left(\frac{\pi}{4}\right)$, then the Intermediate Value Theorem guarantees the existence of some c in $\left[0, \frac{\pi}{4}\right]$ where $f(c)=0$. So, $\left[0, \frac{\pi}{4}\right]$ is a closed interval where the given equation has a solution.

Note: There are infinitely many correct solutions to this problem. The above demonstrates one of them with correct justification. Note that $\tan x$ has infinite discontinuities at $x=n \pi+\frac{\pi}{2}$ for all integers n. So, an argument like the above will not work if the the end points of the interval have such an x-value between them.

