1. (24 pts) Trigonometry

(a) A plane takes off in a straight line with an angle of inclination of $\pi/3$. How far (in the horizontal direction) will the plane have traveled when it reaches a height of 12 km?

(b) Let $f(\theta) = 6 \cos(2\theta) - 1$

i. Sketch a graph of f on the interval $[0, 2\pi]$. (On your graph, label the coordinates of the y intercept and the coordinates of the maximum and minimum values of the function.)

ii. What is the range of f?

iii. Solve the inequality $6 \cos(2\theta) - 1 > 2$ for θ in the interval $[0, 2\pi]$. Write your answer in interval notation.

Solution:

(a)

$$\tan\left(\frac{\pi}{3}\right) = \frac{\text{Height of the Plane}}{\text{Horizontal Distance Traveled}}$$

$$\sqrt{3} = \frac{12 \text{ km}}{\text{Horizontal Distance Traveled}}$$

$$4\sqrt{3} \text{ km} = \text{Horizontal Distance Traveled}$$

(b) $f(\theta) = 6 \cos(2\theta) - 1$ has period π

![Graph of f(\theta)]

i. The range of f is $[-7, 5]$.

ii. Solving $6 \cos(2\theta) - 1 > 2$ is equivalent to solving $\cos(2\theta) > 1/2$. We note that for x in the interval $[0, 2\pi]$, $\cos x = 1/2$ when $x = \pi/3$ or $x = 5\pi/3$. Therefore, $\cos(2\theta) = 1/2$ when $2\theta = \pi/3$ or $2\theta = 5\pi/3$. Hence, $\theta = \pi/6$ or $\theta = 5\pi/6$. Since we want to solve the inequality on the interval $[0, 2\pi]$, we use periodicity to obtain the solution $[0, \pi/6) \cup (5\pi/6, 7\pi/6) \cup (11\pi/6, 2\pi]$

2. (26 pts) Limits Evaluate the following limits and simplify your answers.

(Reminder: You may not use L’Hopital’s Rule in your solution.)

(a) $\lim_{x \to 3} \frac{|x - 3|}{2x^2 - 5x - 3}$

(b) $\lim_{x \to 0} \frac{\tan(3x) \cos(4x)}{x}$
Solution:

(a) To deal with the absolute value, we break this problem into a left limit and a right limit.

\[
\lim_{x \to -\infty} \frac{|x - 3|}{2x^2 - 5x - 3} = \lim_{x \to 3^-} \frac{-(x - 3)}{2x^2 - 5x - 3} = \lim_{x \to 3^-} \frac{-(x - 3)}{(2x + 1)(x - 3)} = \lim_{x \to 3^-} \frac{-1}{2x + 1} = -\frac{1}{7}
\]

\[
\lim_{x \to 3^+} \frac{|x - 3|}{2x^2 - 5x - 3} = \lim_{x \to 3^+} \frac{(x - 3)}{2x^2 - 5x - 3} = \lim_{x \to 3^+} \frac{(x - 3)}{(2x + 1)(x - 3)} = \lim_{x \to 3^+} \frac{1}{2x + 1} = \frac{1}{7}
\]

Since the left limit is not the same as the right limit, we conclude that the limit does not exist.

(b) When approaching a limit that involves trig functions, we aim to isolate one of the special trig limits that we already understand. In this case, \(\lim_{x \to 0} \frac{\sin(x)}{x} = 1\).

\[
\lim_{x \to 0} \frac{\tan(3x) \cos(4x)}{x} = \left(\lim_{x \to 0} \frac{\sin(3x)}{x}\right) \left(\lim_{x \to 0} \frac{\cos(4x)}{3x}\right) = 3 \left(\lim_{x \to 0} \frac{\sin(3x)}{3x}\right) (1) = 3 (1) (1) = 3
\]

(c) For a limit that involves the difference of square roots (or indeed any radicals), we begin by multiplying by the conjugate.

\[
\lim_{x \to -\infty} \left(\sqrt{x^2 + 3x} - \sqrt{x^2 - 3x}\right) = \lim_{x \to -\infty} \frac{(x^2 + 3x) - (x^2 - 3x)}{\sqrt{x^2 + 3x} + \sqrt{x^2 - 3x}} = \lim_{x \to -\infty} \frac{6x}{2x^2 + 3x + \sqrt{x^2 - 3x}} = \lim_{x \to -\infty} \frac{6x}{2x^2 + 3x + \sqrt{x^2 - 3x}} \frac{1}{x}
\]

While this limit is no longer in the indeterminate form of \(\infty - \infty\), it is still in an indeterminate form since both the numerator and denominator are approaching \(\infty\). To deal with this, we now scale out a \(x\) from both the top and bottom so that those expressions no longer grow unbounded.

\[
\lim_{x \to -\infty} \frac{6x}{\sqrt{x^2 + 3x} + \sqrt{x^2 - 3x}} = \lim_{x \to -\infty} \frac{6x}{\sqrt{x^2 + 3x} + \sqrt{x^2 - 3x}} \frac{1}{x}
\]
\[
\lim_{x \to -\infty} \frac{6}{-\sqrt{1 + 3/x} - \sqrt{1 - 3/x}} = \frac{6}{-1 - 1} = -3
\]

3. (26 pts) Consider the function \(f(x) = \frac{3x^2 + 6x - 9}{x^2 - 3x + 2} \).

(a) What is the domain of \(f \)?

(b) Find the equation of each vertical asymptote of the function \(y = f(x) \), if any exist. Support your answer by evaluating the appropriate limits.

(c) Determine the equation of each horizontal asymptote of the function \(y = f(x) \), if any exist. Support your answer by evaluating the appropriate limits.

(d) Use the definition of continuity and your work in parts (a)-(c) to identify the values of \(x \) at which \(f(x) \) is discontinuous. Describe the type of discontinuity at each value.

Solution: \(f(x) \) can be expressed in the following factored form:

\[
f(x) = \frac{3x^2 + 6x - 9}{x^2 - 3x + 2} = \frac{3(x - 1)(x + 3)}{(x - 1)(x - 2)}
\]

(a) The domain of a rational function consists of the set of all \(x \) values for which the polynomial in the denominator does not equal zero. In this problem, the only values of \(x \) for which the denominator equals zero are \(x = 1 \) and \(x = 2 \). Therefore, the domain of \(f \) is:

\[
x \neq 1, x \neq 2 \quad \text{or equivalently, } (-\infty, 1) \cup (1, 2) \cup (2, \infty)
\]

(b) From part (a), there are two values of \(x \) that are not in the domain of \(f \): \(x = 1 \) and \(x = 2 \). We evaluate the limit of \(f(x) \) as \(x \) approaches each of those two values.

\[
\lim_{x \to 1} \frac{3(x - 1)(x + 3)}{(x - 1)(x - 2)} = \lim_{x \to 1} \frac{3(x + 3)}{(x - 2)} = \frac{(3)(1 + 3)}{(1 - 2)} = -12
\]

Since the limit of \(f \) as \(x \) approaches 1 is a finite value, there is no vertical asymptote at \(x = 1 \).

\[
\lim_{x \to 2} \frac{3(x - 1)(x + 3)}{(x - 1)(x - 2)} = \lim_{x \to 2} \frac{3(x + 3)}{(x - 2)}
\]

As \(x \) approaches 2 in the preceding expression, the numerator approaches the finite value of \((3)(2 + 3) = 15 \) and the denominator approaches zero. Considering \(x \to 2^+ \), we see that as the denominator approaches zero, the denominator is positive. That is, we see that

\[
\lim_{x \to 2^+} \frac{3(x - 1)(x + 3)}{(x - 1)(x - 2)} = \lim_{x \to 2^+} \frac{3(x + 3)}{(x - 2)} = \infty.
\]

We could alternatively note that as \(x \to 2^- \), the denominator is negative as it approaches 0. Thus,

\[
\lim_{x \to 2^-} \frac{3(x - 1)(x + 3)}{(x - 1)(x - 2)} = \lim_{x \to 2^-} \frac{3(x + 3)}{(x - 2)} = -\infty.
\]
Either one of these limits by themself is enough to justify that $y = f(x)$ has a vertical asymptote at $x = 2$.

(c) We begin by evaluating the limit of $f(x)$ as x approaches $-\infty$ and the limit of $f(x)$ as x approaches ∞.

$$
\lim_{x \to -\infty} \frac{3(x-1)(x+3)}{(x-1)(x-2)} = \lim_{x \to -\infty} \frac{3(x+3)}{x-2} = \lim_{x \to -\infty} \frac{3x + 9}{x - 2} \cdot \frac{1}{x} = \lim_{x \to -\infty} \frac{3 + \frac{9}{x}}{1 - \frac{2}{x}} = \frac{3 + 0}{1 - 0} = 3
$$

$$
\lim_{x \to \infty} \frac{3(x-1)(x+3)}{(x-1)(x-2)} = \lim_{x \to \infty} \frac{3(x+3)}{x-2} = \lim_{x \to \infty} \frac{3x + 9}{x - 2} \cdot \frac{1}{x} = \lim_{x \to \infty} \frac{3 + \frac{9}{x}}{1 - \frac{2}{x}} = \frac{3 + 0}{1 - 0} = 3
$$

Therefore, f has one horizontal asymptote: $y = 3$.

(d) The definition of continuity indicates that a function $f(x)$ is discontinuous at $x = a$ if, and only if,

$$
\lim_{x \to a} f(x) \neq f(a).
$$

The fact that $f(1)$ and $f(2)$ are undefined suffices to establish that $f(x)$ is discontinuous at $x = 1$ and $x = 2$. Since a rational function is continuous wherever it is defined, those are the only two values of x at which $f(x)$ is discontinuous.

The limit of $f(x)$ as x approaches 1 and the limit of $f(x)$ as x approaches 2 were evaluated in part (b).

Since $\lim_{x \to 1} f(x)$ exists, the discontinuity at $x = 1$ is removable.

Since $\lim_{x \to 2^-} f(x)$ and $\lim_{x \to 2^+} f(x)$ are both infinite, the discontinuity at $x = 2$ is infinite.

4. (24 pts) The following problems are not related.

(a) Suppose f and g are both odd functions and h is an even function. Furthermore, suppose f, g, and h are all defined for all real numbers. Let $j(x) = h(f(x) + g(x))$. Determine if $j(x)$ is even, odd, or neither.

(b) Consider $s(x) = \frac{x}{1-x}$ and $r(x) = \frac{x}{x+1}$. Determine $s \circ r$ and simplify as much as possible. Also, determine the domain of $s \circ r$.

(c) Use a theorem to show that $\cos x = \frac{1}{2}$ has a solution on one of the following intervals:
- $\left[\frac{\pi}{2}, \pi\right]$
- $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- $[-\pi, -\frac{\pi}{2}]$

(Be sure to state the name of the theorem that is used and justify its use. Note that you only need to show a solution exists on one of the intervals, and that some of them may not work. Be sure to identify the correct interval.)

Solution:

(a) If $j(-x) = j(x)$ then $j(x)$ is even. If $j(-x) = -j(x)$, then $j(x)$ is odd. If neither of those facts is true, then $j(x)$ is neither even nor odd. So, we test the definitions:

$$
\begin{align*}
 j(-x) &= h(f(-x) + g(-x)) \\
 &= h(-f(x) - g(x)) \quad \text{(because f and g are odd)} \\
 &= h(-(f(x) + g(x))) \\
 &= h(f(x) + g(x)) \quad \text{(because h is even)} \\
 &= j(x)
\end{align*}
$$

So, $j(x)$ is an even function.
(b)

\[(s \circ r)(x) = s(r(x))\]

\[= s\left(\frac{x}{x+1}\right)\]

\[= \frac{x}{x+1} \cdot \frac{x + 1}{x + 1}\]

\[= \frac{x}{x + 1 - x}\]

\[= x,\]

and the domain of \((s \circ r)(x)\) is \((-\infty, -1) \cup (-1, \infty)\).

(c) Let \(f(x) = \cos x - \frac{1}{x}\). Note that \(f(x)\) is continuous whenever \(x \neq 0\). Also, note that \(f(-\pi) = -1 + \frac{1}{\pi} < 0\) and \(f\left(-\frac{\pi}{2}\right) = \frac{2}{\pi} > 0\). So, \(f(x)\) is continuous on \([-\pi, -\frac{\pi}{2}]\) and 0 is between \(f(-\pi)\) and \(f\left(-\frac{\pi}{2}\right)\). By the Intermediate Value Theorem, we know that \(f(c) = 0\) for some \(c\) in \([-\pi, -\frac{\pi}{2}]\). Thus, \(\cos(c) = \frac{1}{c}\) for this \(c\) in \([-\pi, -\frac{\pi}{2}]\).

(Note that \(f(x)\) is not continuous on \([-\frac{\pi}{2}, \frac{\pi}{2}]\), so the intermediate value theorem does not apply to this interval. Also, \(f\left(\frac{\pi}{2}\right)\) and \(f(\pi)\) are both negative, so the intermediate value theorem does not imply that \(f(x) = 0\) along \([\frac{\pi}{2}, \pi]\).)