1. Core Section: Integration (30 pts)

(a) \[\int \frac{\csc^2(1/t)}{t^2} \, dt \]

(b) \[\int_0^4 \left(|x - 1| + \sqrt{16 - x^2} \right) \, dx \]

(c) Find the average value of \(f(x) = \frac{18x}{(x^2 + 9)^2} \) on \([0, 3]\).

(d) Find the value of \(\lim_{n \to \infty} \sum_{i=1}^{n} \left(4 - 5 \left(-2 + \frac{2i}{n} \right)^4 \right) \frac{2}{n} \). (Hint: Evaluate an integral.)

Solution:

(a) (7 pt) Let \(u = 1/t, \ du = -1/t^2 \, dt \).

\[\int \frac{\csc^2(1/t)}{t^2} \, dt = \int -\csc^2 u \, du = \cot u + C = \cot(1/t) + C. \]

(b) (8 pt) \[\int_0^4 \left(|x - 1| + \sqrt{16 - x^2} \right) \, dx = \frac{1}{2} (1) + \frac{1}{2} (3)(3) + \frac{1}{4} (16\pi) = 4\pi + 5. \]

(c) (8 pt) Let \(u = x^2 + 9, \ du = 2x \, dx \).

\[f_{\text{ave}} = \frac{1}{3} \int_0^3 \frac{18x}{(x^2 + 9)^2} \, dx = \frac{1}{3} \int_9^{18} 9u^{-2} \, du = \frac{1}{3} \left[-\frac{9}{u} \right]_9^{18} = 3 \left(-\frac{1}{18} + \frac{1}{9} \right) = \frac{1}{6}. \]

(d) (7 pt) The expression corresponds to

\[\int_{-2}^0 \left(4 - 5x^4 \right) \, dx = [4x - x^5]_{-2}^0 = 0 - (-8 + 32) = -24 \]

or \[\int_0^2 \left(4 - 5(-2 + x)^4 \right) \, dx = -24. \]
2. (15 pts) Beulah Bug is crawling along the curve \(y = x^2 \). Find the \(x \)-coordinates of the points on the curve where Beulah is closest to her home located at \((0, 1)\).

Solution: Let \(D \) be the distance from the point \((0, 1)\) to a point \((x, x^2)\) on the curve. We can minimize \(S = D^2 \) to find the critical numbers.

\[
D = \sqrt{x^2 + (x^2 - 1)^2}
\]

\[
S = D^2 = x^2 + (x^2 - 1)^2 = x^4 - x^2 + 1
\]

Find the critical numbers.

\[
S' = 4x^3 - 2x
\]

\[
S' = 0 \Rightarrow 2x(2x^2 - 1) = 0 \Rightarrow x = 0, \pm \frac{1}{\sqrt{2}}.
\]

Now perform the second derivative test.

\[
S'' = 12x^2 - 2, \quad S''(0) < 0, \quad S''\left(\pm \frac{1}{\sqrt{2}}\right) > 0.
\]

There is a local maximum at \(x = 0 \) and there are minima at \(x = \pm \frac{1}{\sqrt{2}} \), where Beulah is closest to her home.

3. (24 pts) The following three problems are not related.

(a) Find an equation for the slant asymptote of \(y = \frac{9x^2 + 3x}{3x + 5} \). (It is not necessary to justify your answer with limits.)

(b) If \(\sum_{i=1}^{n} (4i - 2) = 7200 \), what is the value of \(n \)?

(c) Apply Newton’s Method to \(y = x^3 - 2x + 2 \) with an initial approximation of \(x_1 = 0 \).

i. Calculate the next two approximations \(x_2 \) and \(x_3 \).

ii. Copy the graph of the function. (It is not necessary to draw a precise graph.) Sketch the lines used to find \(x_2 \) and \(x_3 \).

iii. Explain what happens to \(x_n \) as \(n \to \infty \). Will \(x_n \) approach the root?

Solution:

(a) (7 pt)

\[
\begin{align*}
\frac{3x - 4}{3x + 5} \\
\frac{9x^2 + 3x}{-9x^2 - 15x} \\
\frac{-12x}{12x + 20} \\
\frac{20}{20}
\end{align*}
\]

There is a slant asymptote at \(y = 3x - 4 \).
(b) \[\sum_{i=1}^{n} (4i - 2) = 4 \sum_{i=1}^{n} i - \sum_{i=1}^{n} 2 = 4 \cdot \frac{n(n + 1)}{2} - 2n = 2 (n^2 + n) - 2n = 2n^2. \]

Solving \(2n^2 = 7200 \) produces \(n = 60 \).

(c) (10 pt)

i. \(f(x) = x^3 - 2x + 2 \) and \(f'(x) = 3x^2 - 2 \). Newton’s method provides the following values for \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(f(x_n))</th>
<th>(f'(x_n))</th>
<th>(x_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-2</td>
<td>(x_2 = 1)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(x_3 = 0)</td>
</tr>
</tbody>
</table>

ii. The following graph shows Newton’s method and the two tangent lines.

iii. As \(n \to \infty \), the values for \(x_n \) cycle between 0 and 1 and will not approach the root.

4. (15 pts) Ralphie is driving her car at 60 feet per second when she sees a red light ahead, 180 feet away. She immediately brakes with a constant acceleration of \(-k \text{ ft/sec}^2 \), \(k > 0 \).

(a) Find the car’s velocity and position functions, \(v(t) \) and \(s(t) \), in terms of \(k \). Assume that the initial position is 0 feet.

(b) How many seconds will it take for Ralphie to come to a complete stop? Express your answer in terms of \(k \).

(c) Find the value of \(k \) that will cause Ralphie to stop right at the light.

Solution:

(a)

\[
\begin{align*}
da(t) &= -k \\
v(t) &= -kt + C \\
v(0) &= 60 \implies v(t) = -kt + 60 \\
s(t) &= -\frac{k}{2}t^2 + 60t + C \\
s(0) &= 0 \implies s(t) = -\frac{k}{2}t^2 + 60t \\
\end{align*}
\]

(b) Let \(t_f \) be the stopping time in seconds. Then

\[
v(t_f) = -kt + 60 = 0 \implies t_f = \frac{60}{k}.
\]
(c) Find the appropriate acceleration so that \(s(t_f) = 180 \).

\[
s(t_f) = -\frac{k}{2} \left(\frac{60}{k} \right)^2 + 60 \left(\frac{60}{k} \right) = \frac{1800}{k} = 180 \implies k = 10.
\]

5. (16 pts)

The graph of a differentiable function \(f \) on the interval \([-1, 5]\) is shown above. The graph of \(f \) has a horizontal tangent line at \(t = 2 \). Let \(g(x) = 5 + \int_2^x f(t) \, dt \) for \(-1 \leq x \leq 5\). No explanations are necessary for the following questions.

(a) Find the values of \(g(2), g'(2), \) and \(g''(2) \).

(b) On what interval(s) is \(g \) decreasing?

(c) On what interval(s) is \(g \) concave down?

Solution:

By the Fundamental Theorem of Calculus, \(g'(x) = f(x) \) and \(g''(x) = f'(x) \).

(a) \[g(2) = 5 + \int_2^2 f(t) \, dt = 5 \]

\[g'(2) = f(2) = 3 \]

\[g''(2) = f'(2) = 0 \]

(b) \((-1, 0)\) and \((4, 5)\)

(c) \((2, 5)\)