1. **Core Section: Differentiation** (30 pts)

 (a) Let \(g(t) = \left(at + \sqrt{a^2 + t^2} \right)^{-2} \). Find \(\frac{dg}{dt} \) and leave your answer unsimplified.

 (b) Given \(5xy^3 - 2 \sqrt{x^3} = 8y + \sqrt{3} \), find \(\frac{dy}{dx} \). (Similar to WebAssign 2.6 #5)

 (c) Find an equation for the line tangent to \(y = \frac{\sec(3x)}{2 + \tan(3x)} \) at \(x = 0 \).

Solution:

(a) \[g'(t) = -2 \left(at + \sqrt{a^2 + t^2} \right)^{-3} \left(a + \frac{1}{2} \left(a^2 + t^2 \right)^{-1/2} \right) \]

(b) \[5xy^3 - 2 \sqrt{x^3} = 8y + \sqrt{3} \]

\[5x (3y^2) \frac{dy}{dx} + 5y^3 - 3 \sqrt{x} = 8 \frac{dy}{dx} \]

\[\frac{dy}{dx} \left(15xy^2 - 8 \right) = 3 \sqrt{x} - 5y^3 \]

\[\frac{dy}{dx} = \frac{3 \sqrt{x} - 5y^3}{15xy^2 - 8} \]

(c) \[y' = \frac{(2 + \tan(3x)) (3 \sec(3x) \tan(3x)) - \sec(3x) (3 \sec^2(3x))}{(2 + \tan(3x))^2} \]

\[y'(0) = 0 - \frac{3}{2^2} = -\frac{3}{4} \quad \text{and} \quad y(0) = \frac{1}{2} \]

An equation for the tangent line is \(y = \frac{1}{2} - \frac{3}{4}x \).

2. (15 pts) Let \(f(x) = \begin{cases} \frac{8}{3}x & x < 6 \\ (x - 2)^2 & x \geq 6 \end{cases} \)

 (a) Write the limit definition of \(f'(a) \), the derivative of \(f(x) \) at \(x = a \).

 (b) Use the definition to determine the value of \(f'(6) \) or to show that it does not exist. (Similar to HW 4 #4b)

Solution:

(a) \[f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \quad \text{or} \quad \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \]
(b) From the left:
\[
\lim_{h \to 0^-} \frac{\frac{8}{3}(6 + h) - 16}{h} = \lim_{h \to 0^-} \frac{16 + \frac{8}{3}h - 16}{h} = \frac{8}{3}.
\]

From the right:
\[
\lim_{h \to 0^+} \frac{(6 + h - 2)^2 - 16}{h} = \lim_{h \to 0^+} \frac{(h + 4)^2 - 16}{h} = \lim_{h \to 0^+} \frac{h^2 + 8h}{h} = 8.
\]

Since the limit from the left does not equal the limit from the right, \(f'(6) \) does not exist.

3. (15 pts) A street light is mounted at the top of a 17-ft-tall pole. A woman 5 ft tall walks away from the pole with a speed of 4 ft/s along a straight path. How fast is the tip of her shadow moving when she is 34 ft from the pole? (Similar to HW 6 #3)

Solution:

Given: \(\frac{dx}{dt} = 4 \) ft/sec. Find \(\frac{dy}{dt} \) when \(x = 34 \) ft.

By similar triangles,
\[
\frac{17}{5} = \frac{y}{y-x} \Rightarrow 17y - 17x = 5y \Rightarrow 12y = 17x
\]
\[
12 \frac{dy}{dt} = 17 \frac{dx}{dt} \Rightarrow \frac{dy}{dt} = \frac{17}{12} \times (4) = \frac{17}{3}.
\]

The tip of the shadow is moving at \(\frac{17}{3} \) ft/sec.

(Note that the answer is independent of the woman’s distance from the pole.)

4. (20 pts) Consider \(f(x) = \frac{x^2 + x + 4}{x + 1} \) with \(f'(x) = 1 - \frac{4}{(x + 1)^2} \) and \(f''(x) = \frac{8}{(x + 1)^3} \). (Similar to WebAssign 3.3 #10)

(a) On what intervals is \(f \) increasing? decreasing?
(b) Find the \(x \) and \(y \) coordinates of the local maximum and minimum values of \(f \).
(c) On what intervals is \(f \) concave up? concave down?
(d) Use parts (a) to (c) to sketch a graph of \(f \).

Solution:

(a) \(f'(x) = 0 \Rightarrow x + 1 = \pm 2 \Rightarrow x = -3, 1 \). \(f' \) is undefined at \(x = -1 \).
The intervals for the function y are:

<table>
<thead>
<tr>
<th>Intervals</th>
<th>y'</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < -3$</td>
<td>+</td>
<td>increasing on $(-\infty, -3)$</td>
</tr>
<tr>
<td>$-3 < x < -1$</td>
<td>-</td>
<td>decreasing on $(-3, -1)$</td>
</tr>
<tr>
<td>$-1 < x < 1$</td>
<td>-</td>
<td>decreasing on $(-1, 1)$</td>
</tr>
<tr>
<td>$x > 1$</td>
<td>+</td>
<td>increasing on $(1, \infty)$</td>
</tr>
</tbody>
</table>

(b) There is a local maximum at $(-3, -5)$ and a local minimum at $(1, 3)$.

(c) y'' does not equal 0 for any x. It is undefined at $x = -1$.

<table>
<thead>
<tr>
<th>Intervals</th>
<th>y''</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < -1$</td>
<td>-</td>
<td>concave down on $(-\infty, -1)$</td>
</tr>
<tr>
<td>$x > -1$</td>
<td>+</td>
<td>concave up on $(-1, \infty)$</td>
</tr>
</tbody>
</table>

(d) The function $y = \frac{x^2 + x + 4}{x + 1}$ is given.

5. (20 pts)

Shown above is the graph of $y = g(x)$ and the line tangent to g at $(1, -2)$. The function g is differentiable on $(-4, 6) \cup (6, 8)$.

(a) Sketch the graph of $y = g'(x)$. Label tick marks clearly. (Similar to HW 4 #3)

(b) Use the linearization of g at $a = 1$ to estimate the value of $g(0.7)$. (Similar to Exam 2 #5 fall 2017)

(c) The Mean Value Theorem states that there exists a value of c in $(-4, 6)$ such that $g'(c)$ equals a certain value.

i. What is that value?
ii. Suppose we wish to narrow down the possible values for c. Between which two consecutive integers can c be found? List all possible answers. No explanation is necessary.

Solution:

(a)

(b) $L(x) = g(1) + g'(1)(x - 1) = -2 + 4(x - 1) \Rightarrow L(0.7) = -2 + 4(0.7 - 1) = -3.2$.

(c) i. $g'(c) = g(6) - g(-4) = 2 - (-6) \Rightarrow g'(c) = \frac{4}{5}$.

ii. The tangent slope is $4/5$ in the intervals $(-1, 0)$ and $(2, 3)$.

\[y = g'(x) \]

\[\begin{array}{c|c|c|c}
-4 & -2 & 2 & 4 & 8 & 8 \\
\hline
-3 & -2 & 4 & \\
\end{array} \]