APPM 1345

Exam 3
Spring 2024

Name

Instructor Richard McNamara
Section 150

This exam is worth 100 points and has $\mathbf{4}$ problems.
Make sure all of your work is written in the blank spaces provided. If your solutions do not fit, there is additional space at the end of the test. Be sure to make a note indicating the page number where the work is continued or it will not be graded.
Show all work and simplify your answers. Name any theorem that you use. Answers with no justification will receive no points unless the problem explicitly states otherwise.

Notes, papers, calculators, cell phones, and other electronic devices are not permitted.

End-of-Exam Checklist

1. If you finish the exam before 7:45 PM:

- Go to the designated area to scan and upload your exam to Gradescope.
- Verify that your exam has been correctly uploaded and all problems have been labeled.
- Leave the physical copy of the exam with your proctors.

2. If you finish the exam after 7:45 PM:

- Please wait in your seat until 8:00 PM.
- When instructed to do so, scan and upload your exam to Gradescope at your seat.
- Verify that your exam has been correctly uploaded and all problems have been labeled.
- Leave the physical copy of the exam with your proctors.

Formula

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

1. (23 pts) Parts (a) and (b) are unrelated.
(a) Find the inverse function of $f(x)=\frac{\ln (2 x)}{1+\ln (2 x)}$ for $x \geq \frac{1}{2}$.

Express your answer in the form $f^{-1}(x)$. (You do not have to identify the inverse function's domain.)
(b) Consider the function $g(x)=2 x-\cos x$.
i. Explain why g is invertible, based on its derivative.
ii. Find an equation of the line that is tangent to the curve $y=g^{-1}(x)$ at the point $(4 \pi-1,2 \pi)$. Hint: Do not attempt to identify the function $g^{-1}(x)$.
2. (25 pts) Parts (a) and (b) are unrelated.
(a) If a substance undergoing exponential decay has a half-life of 50 years, how many years would it take for a sample of that substance to decay to 1 percent of its original amount?
(b) Consider the function $p(t)=p_{0} e^{k t}$, which represents an exponential growth model for a population, where the constant p_{0} represents the initial population size and the constant k represents the population's relative growth rate. Suppose $p(10)=2$ and $p(50)=6$.
i. Find the value of k.
ii. Find the value of p_{0}.
3. (26 pts) Evaluate the following derivatives using properties of logarithms and/or logarithmic differentiation. Do not fully simplify your answers, although they must be expressed as functions of x.
(a) $\frac{d}{d x}\left[\ln \left(\frac{\left(10-\cos ^{2} x\right) \sqrt{x^{4}+6}}{e^{x \sin x}}\right)\right]$
(b) $\frac{d}{d x}\left[\left(e^{x}+e^{-x}\right)^{x}\right]$
4. (26 pts) Evaluate the following integrals.
(a) $\int_{1}^{2} \frac{2^{x}}{9-2^{x}} d x$
(b) $\int \frac{x}{x-1} d x$

Your Initials

ADDITIONAL BLANK SPACE
If you write a solution here, please clearly indicate the problem number.

