1. (44 pts) Evaluate the following expressions. Fully simplify your answers.
(a) $\lim _{x \rightarrow 0} \frac{\sin (x / 2)}{e^{2 x}-1}$

Solution:

$\lim _{x \rightarrow 0} \underbrace{\frac{\sin (x / 2)}{e^{2 x}-1}}_{0 / 0} \stackrel{L H}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{2} \cos (x / 2)}{2 e^{2 x}}=\frac{\frac{1}{2} \cos 0}{2 e^{0}}=\frac{\frac{1}{2}}{2}=\frac{1}{4}$
(b) $\frac{d}{d x} \int_{0}^{x^{2}} e^{t} \cos t d t$

Solution: By FTC-1 and the chain rule:

$$
\frac{d}{d x} \int_{0}^{x^{2}} e^{t} \cos t d t=2 x e^{x^{2}} \cos \left(x^{2}\right)
$$

(c) $\frac{d}{d x}\left((\sec x)^{x}\right)$

Solution:

$$
\begin{aligned}
y & =(\sec x)^{x} \\
\ln y & =\ln \left((\sec x)^{x}\right) \\
& =x \ln (\sec x) \\
\frac{1}{y} \cdot \frac{d y}{d x} & =x \cdot \frac{\sec x \tan x}{\sec x}+\ln (\sec x) \\
& =x \tan x+\ln (\sec x) \\
\frac{d y}{d x} & =(\sec x)^{x}(x \tan x+\ln (\sec x))
\end{aligned}
$$

(d) $\int \frac{\tan \theta}{\cos ^{2} \theta} d \theta$

Solution: Let $u=\tan \theta, d u=\sec ^{2} \theta d \theta$.

$$
\begin{aligned}
\int \frac{\tan \theta}{\cos ^{2} \theta} d \theta & =\int \tan \theta \sec ^{2} \theta d \theta \\
& =\int u d u=\frac{u^{2}}{2}+C=\frac{1}{2} \tan ^{2} \theta+C
\end{aligned}
$$

Alternate Solution: Let $u=\sec \theta, d u=\sec \theta \tan \theta d \theta$.

$$
\begin{aligned}
\int \frac{\tan \theta}{\cos ^{2} \theta} d \theta & =\int \tan \theta \sec ^{2} \theta d \theta \\
& =\int u d u=\frac{u^{2}}{2}+C=\frac{1}{2} \sec ^{2} \theta+C
\end{aligned}
$$

Alternate Solution:

$$
\begin{aligned}
\int \frac{\tan \theta}{\cos ^{2} \theta} d \theta & =\int \frac{\frac{\sin \theta}{\cos \theta}}{\cos ^{2} \theta} d \theta \\
& =\int \frac{\sin \theta}{\cos ^{3} \theta} d \theta
\end{aligned}
$$

Let $u=\cos \theta, d u=-\sin \theta d \theta$.

$$
\begin{aligned}
\int \frac{\tan \theta}{\cos ^{2} \theta} d \theta & =\int-\frac{d u}{u^{3}}=\int-u^{-3} d u \\
& =\frac{1}{2} u^{-2}+C=\frac{1}{2}(\cos \theta)^{-2}+C=\frac{1}{2} \sec ^{2} \theta+C
\end{aligned}
$$

(e) $\sum_{i=1}^{6} \ln \left(\frac{i+3}{i+2}\right)$ (Write your answer as a single log expression.)

Solution:

$$
\begin{aligned}
\sum_{i=1}^{6} \ln \left(\frac{i+3}{i+2}\right) & =\ln \left(\frac{4}{3}\right)+\ln \left(\frac{5}{4}\right)+\ln \left(\frac{6}{5}\right)+\cdots+\ln \left(\frac{9}{8}\right) \\
& =\ln \left(\frac{4}{3} \cdot \frac{\boxed{5}}{4} \cdot \frac{6}{\not{4}} \cdots \frac{9}{\not 又}\right)=\ln \left(\frac{9}{3}\right)=\ln 3
\end{aligned}
$$

2. (12 pts) A particle is moving along a straight line. The position function of the particle in meters after t seconds is given by

$$
s(t)=\frac{t^{3}}{3}-\frac{5 t^{2}}{2}+6 t, \quad 1 \leq t \leq 5
$$

(a) Find the particle's instantaneous velocity $v(t)$ at $t=4$ seconds.
(b) What is the average value of the acceleration $a(t)$ on the interval $[1,5]$?

Solution:

(a)

$$
\begin{aligned}
& s(t)=\frac{t^{3}}{3}-\frac{5 t^{2}}{2}+6 t \\
& v(t)=s^{\prime}(t)=t^{2}-5 t+6 \\
& v(4)=16-20+6=2 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

(b) Note that $a(t)=v^{\prime}(t)$, so $\int a(t) d t=v(t)+C$.

$$
\begin{aligned}
f_{\text {ave }} & =\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
a_{\text {ave }} & =\frac{1}{5-1} \int_{1}^{5} a(t) d t \\
& =\frac{1}{4}[v(t)]_{1}^{5} \\
& =\frac{1}{4}\left[t^{2}-5 t+6\right]_{1}^{5} \\
& =\frac{1}{4}\left[\left(5^{2}-5^{2}+6\right)-(1-5+6)\right] \\
& =\frac{1}{4}(6-2)=1 \mathrm{~m} / \mathrm{sec}^{2} .
\end{aligned}
$$

3. $\left(28\right.$ pts) Let $g(x)=\frac{x}{1+4 x}$.
(a) What is the domain of the function? Express your answer in interval notation.

Solution: The function is not defined when the denominator equals zero at $x=-\frac{1}{4}$, so the domain is $\left(-\infty,-\frac{1}{4}\right) \cup\left(-\frac{1}{4}, \infty\right)$.
(b) Find $g^{\prime}(x)$ and simplify.

Solution: By the quotient rule:
$g^{\prime}(x)=\frac{(1+4 x)-4 x}{(1+4 x)^{2}}=\frac{1}{(1+4 x)^{2}}$.
(c) Find the inverse function $g^{-1}(x)$.

Solution: First solve for x.

$$
\begin{aligned}
y & =\frac{x}{1+4 x} \\
y+4 x y & =x \\
4 x y-x & =-y \\
x(4 y-1) & =-y \\
x & =\frac{-y}{4 y-1}
\end{aligned}
$$

Then swap x and y.

$$
g^{-1}(x)=\frac{-x}{4 x-1}=\frac{x}{1-4 x}
$$

(d) Evaluate $\int_{1}^{6} \frac{1}{1+4 x} d x$.

Solution: Let $u=1+4 x, d u=4 d x$.

$$
\left.\int_{1}^{6} \frac{d x}{1+4 x}=\int_{5}^{25} \frac{1}{4} \frac{d u}{u}=\frac{1}{4} \ln |u|\right]_{5}^{25}=\frac{1}{4}(\ln 25-\ln 5)=\frac{1}{4} \ln \frac{25}{5}=\frac{1}{4} \ln 5
$$

4. (12 pts) The Shiveluch volcano on the Kamchatka peninsula is currently erupting and forming a lava dome in the shape of a hemisphere.
(a) When the radius of the dome is 10 meters, it is increasing at a rate of 2 meters/hour. How fast is the volume of the dome changing? (The volume of a hemisphere is $V=\frac{2}{3} \pi r^{3}$.)
(b) Assume that the volume's rate of change remains constant. Find the radius when it is increasing at a rate of 1 meter/hour.

Solution:

(a) It is given that $d r / d t=2 \mathrm{~m} / \mathrm{hr}$ when $r=10 \mathrm{~m}$. We wish to find $d V / d t$.

$$
\begin{aligned}
V & =\frac{2}{3} \pi r^{3} \\
\frac{d V}{d t} & =2 \pi r^{2} \frac{d r}{d t} \\
& =2 \pi 10^{2} \cdot 2=400 \pi \mathrm{~m}^{3} / \mathrm{hr}
\end{aligned}
$$

(b) Now find r when $d r / d t=1 \mathrm{~m} / \mathrm{hr}$.

$$
\begin{aligned}
\frac{d V}{d t} & =2 \pi r^{2} \frac{d r}{d t} \\
400 \pi & =2 \pi r^{2} \cdot 1 \\
200 & =r^{2} \\
r & =\sqrt{200}=10 \sqrt{2} \mathrm{~m}
\end{aligned}
$$

5. (28 pts) The following two problems are not related.
(a) Let $f(x)=\frac{\sin ^{-1}(x)}{x}$.
i. Find the values of $f(-1)$ and $f(1)$.
ii. Does $f(x)$ have any vertical asymptotes? If so, find them. Justify your answer using limits.

Solution:

i. $f(-1)=\frac{\sin ^{-1}(-1)}{-1}=\frac{-\pi / 2}{-1}=\frac{\pi}{2}, f(1)=\frac{\sin ^{-1}(1)}{1}=\frac{\pi / 2}{1}=\frac{\pi}{2}$
ii. The only potential vertical asymptote is at $x=0$.

$$
\lim _{x \rightarrow 0} \underbrace{\frac{\sin ^{-1}(x)}{x}}_{0 / 0} \stackrel{L H}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{1-x^{2}}}}{1}=1 .
$$

Because the function does not approach positive or negative infinity at $x=0$, it has no vertical asymptotes.
(b) Let $h(x)=\sinh (\ln x)$.
i. Find $h^{\prime}(x)$.
ii. Find an equation of the line tangent to the curve $y=h(x)$ at $x=3$. Write your fully simplified answer in slope-intercept form with no hyperbolic functions.

Solution:

i. $h^{\prime}(x)=\frac{1}{x} \cosh (\ln x)$
ii.

$$
\begin{aligned}
h(3) & =\sinh (\ln 3)=\frac{e^{\ln 3}-e^{-\ln 3}}{2}=\frac{3-\frac{1}{3}}{2}=\frac{\frac{8}{3}}{2}=\frac{4}{3} \\
h^{\prime}(3) & =\frac{1}{3} \cosh (\ln 3)=\frac{1}{3} \cdot \frac{e^{\ln 3}+e^{-\ln 3}}{2}=\frac{1}{3} \cdot \frac{3+\frac{1}{3}}{2}=\frac{1}{3} \cdot \frac{\frac{10}{3}}{2}=\frac{5}{9}
\end{aligned}
$$

The tangent line is

$$
\begin{aligned}
y & =h(3)+h^{\prime}(3)(x-3) \\
& =\frac{4}{3}+\frac{5}{9}(x-3) \\
y & =\frac{5}{9} x-\frac{1}{3} .
\end{aligned}
$$

6. (12 pts) A sample of the radioactive element Unobtainium decayed by 10% in one day. In hours, how long did it take for the sample to decay by 3% ?

Solution:

Let $m(t)=m_{0} e^{k t}$ represent the mass of the radioactive substance. It is given that after 24 hours, $m(24)=$ $0.9 m_{0}$. First find k.

$$
\begin{aligned}
m(24)=0.9 m_{0} & =m_{0} e^{24 k} \\
0.9 & =e^{24 k} \\
\ln 0.9 & =\ln \left(e^{24 k}\right)=24 k \\
k & =\frac{\ln 0.9}{24}
\end{aligned}
$$

Now find t when $m(t)=0.97 m_{0}$.

$$
\begin{aligned}
m(t)=0.97 m_{0} & =m_{0} e^{k t} \\
0.97 & =e^{k t} \\
\ln 0.97 & =\ln \left(e^{k t}\right)=k t \\
t & =\frac{\ln 0.97}{k}=\frac{24 \ln 0.97}{\ln 0.9} \text { hours }
\end{aligned}
$$

7. (14 pts) Consider the six graphs A, B, C, D, E, and F shown below. No justification is necessary for the following questions.

Graph D

Graph E

Graph F

(a) Which of the six graphs satisfies all of the following conditions?

- $\lim _{x \rightarrow-\infty} f(x)=-2$
- $f^{\prime}(1)=0$ and $f^{\prime \prime}(1)>0$
- $\lim _{x \rightarrow-2} f(x)=\infty$
- the line $y=2 x-3$ is tangent to f at $x=3$

Solution: Graph E

(b) Which of the six graphs is the derivative graph of the function $y=r(x)$ shown below?

Solution: Graph D

