1. $(24 \mathrm{pts})$ The following parts of this problem are not related.
(a) (12pts) Suppose the function $g(x)=\frac{x+2}{x-3}$ is one-to-one, find the inverse $g^{-1}(x)$. Show all work.
(b)(12pts) If f is a one-to-one function with $f(0)=7$ and $f^{\prime}(0)=3$, find $\frac{d}{d x} f^{-1}(7)$ given $\left[f^{-1}(a)\right]^{\prime}=\left[f^{\prime}\left(f^{-1}(a)\right)\right]^{-1}$.

Solution: (a) (12pts) Solving for x gives

$$
\begin{aligned}
y=\frac{x+2}{x-3} \Rightarrow y(x-3)=x+2 & \Rightarrow x y-3 y=x+2 \\
& \Rightarrow x y-x=3 y+2 \Rightarrow x(y-1)=3 y+2 \Rightarrow x=\frac{3 y+2}{y-1} \Rightarrow f^{-1}(x)=\frac{3 x+2}{x-1}
\end{aligned}
$$

(b) (12pts) Note that $f(0)=7 \Rightarrow f^{-1}(7)=0$ thus

$$
\frac{d}{d x} f^{-1}(7)=\left[f^{\prime}\left(f^{-1}(7)\right)\right]^{-1}=\frac{1}{f^{\prime}\left(f^{-1}(7)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{3} \Rightarrow \frac{d}{d x} f^{-1}(7)=\frac{1}{3} .
$$

2. (28pts) Start this problem on a new page. The following parts are not related.
(a)(12pts) A bacteria culture initially contains 100 cells and grows at a rate proportional to its size. After an hour the population has increased to 420 . Write down the solution of the differential equation $\frac{d y}{d t}=k y, y(0)=y_{0}$ (no justification necessary for the solution of the DE) and then find the relative growth rate, k, of the bacteria population based on the given information.
(b)(12pts) Use the Product Rule to find the derivative of the function $f(x)=\sin (x) \ln \left(x^{2}+1\right)$.
(c)(4pts) Multiple Choice: If we use the following definition of the derivative: $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ to evaluate the limit $\lim _{x \rightarrow 0} \frac{\ln (1+2 x)}{x}$ then which choice below do we get?
(No justification necessary, choose only one answer - copy down the entire answer in your bluebook.)
(A) 0
(B) $\frac{0}{0}$
(C) $\frac{1}{2}$
(D) 1
(E) 2

Solution: (a)(12pts) Note that, by a theorem in class, we have $\frac{d y}{d t}=k y \Rightarrow y=y_{0} e^{k t}$ and we are given that $y(0)=100=y_{0}$ so $y=100 e^{k t}$ and

$$
420=100 e^{k} \Rightarrow e^{k}=\frac{420}{100} \Rightarrow \ln \left(e^{k}\right)=\ln (4.2) \Rightarrow \text { Growth rate is } k=\ln (4.2)
$$

(b)(12pts) The Product Rule (with some input from Chain Rule) doth sayeth:

$$
f^{\prime}(x)=\left[\sin (x) \ln \left(x^{2}+1\right)\right]^{\prime}=\cos (x) \ln \left(x^{2}+1\right)+\sin (x) \cdot\left(\frac{1}{x^{2}+1} \cdot 2 x\right)=\cos (x) \ln \left(x^{2}+1\right)+\frac{2 x \sin (x)}{x^{2}+1}
$$

(c)(4pts) Choice (E) Discussion: If we let $f(x)=\ln (1+2 x)$ and $a=0$ then we have

$$
\lim _{x \rightarrow 0} \frac{\ln (1+2 x)}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=\left.\frac{d}{d x}[\ln (1+2 x)]\right|_{x=0}=\left.\frac{2}{1+2 x}\right|_{x=0}=2 \Rightarrow \text { Choice (E) }
$$

3. (24pts) Start this problem on a new page. The following parts are not related.
(a)(12pts) Use the Quotient Rule to find the $f^{\prime}(x)$ if $f(x)=\frac{e^{x}}{1+e^{x}}$. Simplify your answer.
(b) (12pts) Use logarithmic differentiation to find the derivative of: $\frac{(x+1)^{4}}{(x-3)^{8}}$.

Solution: (a)(12pts) Hear ye, in accordance with the Quotient Rule, we declare

$$
\left[\frac{e^{x}}{1+e^{x}}\right]^{\prime}=\frac{e^{x}\left(1+e^{x}\right)-e^{x} e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}+e^{2 x}-e^{2 x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}
$$

(b) (12pts) Let $y=\frac{(x+1)^{4}}{(x-3)^{8}}$ then taking the natural log of both sides and differentiating with respect to x yields

$$
\begin{aligned}
y=\frac{(x+1)^{4}}{(x-3)^{8}} & \Rightarrow \ln (y)=\ln \left[\frac{(x+1)^{4}}{(x-3)^{8}}\right]=4 \ln (x+1)-8 \ln (x-3) \\
& \stackrel{d / d x}{\Rightarrow} \frac{y^{\prime}}{y}=\frac{4}{x+1}-\frac{8}{x-3} \\
& \Rightarrow y^{\prime}=y\left[\frac{4}{x+1}-\frac{8}{x-3}\right] \Rightarrow y^{\prime}=\frac{(x+1)^{4}}{(x-3)^{8}}\left[\frac{4}{x+1}-\frac{8}{x-3}\right]=-\frac{4(x+5)(x+1)^{3}}{(x-3)^{9}}
\end{aligned}
$$

4. (24pts) Start this problem on a new page. The following parts are not related.
(a) (10pts) Use u-substitution to find the antiderivative: $\int \frac{\ln (1+2 x)}{2 x+1} d x$.
(b)(10pts) Evaluate the definite integral: $\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{e^{1 / x}}{x^{2}} d x$.
(c) $(4 \mathrm{pts})$ Multiple Choice: The horizontal asymptotes of the function $f(x)=\frac{e^{2 x}-e^{x}}{e^{2 x}+1}$ are given by which choice below?
(No justification necessary, choose only one answer - copy down the entire answer in your bluebook.)
(A) $y=0,1$
(B) $y= \pm 1$
(C) $y=0, \frac{1}{2}$
(D) $y=\frac{1}{e^{2}}, 1$
(E) $y=\frac{1}{e}, 1$

Solution: (a)(10pts) Using the u-substitution $u=\ln (1+2 x) \Rightarrow d u=\frac{2}{1+2 x} d x \Rightarrow \frac{d u}{2}=\frac{d x}{2 x+1}$ thus

$$
\int \frac{\ln (1+2 x)}{2 x+1} d x=\int \ln (1+2 x) \frac{d x}{2 x+1}=\frac{1}{2} \int u d u=\frac{1}{2} \cdot \frac{u^{2}}{2}+C=\frac{1}{4} \ln ^{2}(1+2 x)+C .
$$

(b)(10pts) If we let $u=\frac{1}{x} \Rightarrow d u=-\frac{1}{x^{2}} d x$ and $x=\frac{1}{4} \Rightarrow u=4$ and $x=\frac{1}{2} \Rightarrow u=2$ and so

$$
\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{e^{1 / x}}{x^{2}} d x=-\int_{4}^{2} e^{u} d u=\int_{2}^{4} e^{u} d u=\left.e^{u}\right|_{2} ^{4}=e^{4}-e^{2}=e^{2}\left(e^{2}-1\right)
$$

(c)(4pts) Choice A. Discussion: Note that $e^{2 x} \rightarrow \infty$ as $x \rightarrow \infty$ and $e^{2 x} \rightarrow 0$ as $x \rightarrow-\infty$ thus taking limits yields $\lim _{x \rightarrow \infty} \frac{e^{2 x}-e^{x}}{e^{2 x}+1} \stackrel{D O P}{\approx} \lim _{x \rightarrow \infty} \frac{e^{2 x}}{e^{2 x}}=1$ and $\lim _{x \rightarrow-\infty} \frac{e^{2 x}-e^{x}}{e^{2 x}+1}=\frac{0-0}{0+1}=0 \Rightarrow$ HAs: $y=0,1 \Rightarrow$ Choice (A).

