1. $(24 \mathrm{pts})$ The following problems are not related.
(a)(12pts) Find the value of the sum $\sum_{i=1}^{n} \frac{1}{n}\left[\frac{i}{n}+\frac{i^{2}}{n^{2}}\right]$ in terms of n. (Do not take any limits.). You may or may not find the following formulas useful:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \text { and } \quad \sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

(b)(12pts) Use the Fundamental Theorem of Calculus to evaluate the integral: $\int_{0}^{2}\left(2-x^{2}\right) d x$

Solution: (a)(12pts) Note that

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{n}\left[\frac{i}{n}+\frac{i^{2}}{n^{2}}\right] & =\frac{1}{n^{2}} \sum_{i=1}^{n} i+\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\frac{1}{n^{2}} \cdot \frac{n(n+1)}{2}+\frac{1}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}=\frac{n(n+1)}{2 n^{2}}+\frac{n(n+1)(2 n+1)}{6 n^{3}}
\end{aligned}
$$

(b)(12pts) Note that, by the Fundamental Theorem of Calculus, we have

$$
\int_{0}^{2}\left(2-x^{2}\right) d x=2 x-\left.\frac{x^{3}}{3}\right|_{0} ^{2}=4-\frac{8}{3}=\frac{4}{3}
$$

2. (28pts) Start this problem on a new page. The following problems are not related.
(a)(12pts) Approximate the area under the curve $y=x^{2}+2 x+4$ from $x=0$ to $x=6$ with a Riemann sum using $n=3$ subintervals of equal width and left endpoints (that is, find the approximation L_{3}).
(b)(12pts) Write the expression $\int_{2}^{5} f(x) d x+\int_{-2}^{2} f(t) d t-\int_{-2}^{-1} f(x) d x$ as a single integral in the form $\int_{a}^{b} f(x) d x$.
(c) (4pts) (Multiple Choice) Using right endpoints $\left(R_{n}\right)$ and subintervals of equal width, which limit below is equal to the definite integral $\int_{1}^{3} \frac{x}{x^{2}+4} d x$? (No justification necessary-Choose only one answer, copy down the entire answer.)
(A) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i / n}{(2 i / n)^{2}+4} \cdot \frac{2}{n}$
(B) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1+2 i / n}{(1+2 i / n)^{2}+4} \cdot \frac{2}{n}$
(C) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1+2(i-1) / n}{(1+2(i-1) / n)^{2}+4} \cdot \frac{2 i}{n}$
(D) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i / n}{(2 i / n)^{2}+4}$

Solution:

(a)(12pts) Note that $\Delta x=\frac{6-0}{3}=2$ implies that $x_{0}=0, x_{1}=2, x_{2}=4$ and $x_{3}=6$, thus, using left endpoints yields the approximation

$$
\int_{0}^{6}\left[x^{2}+2 x+4\right] d x \approx L_{3}=\sum_{i=1}^{3} f\left(x_{i-1}\right) \Delta x=f(0) \cdot 2+f(2) \cdot 2+f(4) \cdot 2=2[4+12+28]=2 \cdot 44=88 .
$$

(b)(12pts) Note that in a definite integral the variable of integration is a dummy variable and can be replaced with any other variable so we can write $\int_{-2}^{2} f(t) d t=\int_{-2}^{2} f(x) d x$ thus

$$
\int_{2}^{5} f(x) d x+\int_{-2}^{2} f(t) d t-\int_{-2}^{-1} f(x) d x=\int_{-1}^{-2} f(x) d x+\int_{-2}^{2} f(x) d x+\int_{2}^{5} f(x) d x=\int_{-1}^{5} f(x) d x
$$

(c)(4pts) Choice (B). Discussion: We know that $a=1$ and $b=3$ from the integral, so $\Delta x=(3-1) / n=2 / n$. Likewise, using right endpoints, we find that $x_{i}=1+2 i / n$. Combining this information into the limit definition, we get

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1+2 i / n}{(1+2 i / n)^{2}+4} \frac{2}{n} \Rightarrow \text { Choice (B). }
$$

3. (24pts) Start this problem on a new page. The following problems are not related.
(a) (12pts) Evaluate the definite integral $\int_{0}^{3}|x-2| d x$.
(b)(12pts) Use a u-substitution to evaluate the indefinite integral $\int x \sqrt{x-1} d x$. Show all work.

Solution: (a) (12pts) This problem can be done geometrically or directly. Note that the graph of $f(x)=|x-2|$, where $0 \leq x \leq 3$, looks like:

and so we see the region of interest can be described by two triangles, one triangle with base and height length of 2 units and the other triangle with base and height length of 1 unit, thus

$$
\int_{0}^{3}|x-2| d x=\frac{1}{2} \cdot 2 \cdot 2+\frac{1}{2} \cdot 1 \cdot 1=\frac{4}{2}+\frac{1}{2}=\frac{5}{2}
$$

We can also do the integral directly by applying the definition of the absolute value and separating the integral:

$$
\int_{0}^{3}|x-2| d x=\int_{0}^{2}|x-2| d x+\int_{2}^{3}|x-2| d x=\int_{0}^{2}-(x-2) d x+\int_{2}^{3}(x-2) d x
$$

thus,

$$
\begin{aligned}
\int_{0}^{3}|x-2| d x & =\int_{0}^{2}-(x-2) d x+\int_{2}^{3}(x-2) d x \\
& =-\left.\left(\frac{x^{2}}{2}-2 x\right)\right|_{0} ^{2}+\left.\left(\frac{x^{2}}{2}-2 x\right)\right|_{2} ^{3} \\
& =-\left(\frac{2^{2}}{2}-2 \cdot 2\right)+0+\left(\frac{3^{2}}{2}-2 \cdot 3\right)-\left(\frac{2^{2}}{2}-2 \cdot 2\right)=2+\frac{9}{2}-6+2=\frac{9}{2}-2=\frac{5}{2} .
\end{aligned}
$$

(b)(12pts) If we use the u-substitution $u=x-1$ then $d u=d x$ and $x=u+1$ and so

$$
\int x \sqrt{x-1} d x=\int(u+1) \sqrt{u} d u=\int\left(u^{3 / 2}+u^{1 / 2}\right) d u=\frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}+C=\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C
$$

4. (24pts) Start this problem on a new page. The following problems are not related.
(a)(10pts) Evaluate the definite integral: $\int_{0}^{\pi / 2} \sin ^{2}(x) \cos (x) d x$
(b)(10pts) If $f(x)=\int_{4}^{x^{2}} \frac{t-1}{t^{2}+1} d t$, use the Fundamental Theorem of Calculus to find $f^{\prime}(2)$. Simplify your answer.
(c)(4pts) Suppose we have a rectangle of width $w=4$, what should the height, h, of the rectangle be so that the area of the rectangle and the area bounded by the curve $f(x)=\sqrt{x}$, for $0 \leq x \leq 4$, and the x-axis are the same?
(No justification necessary - Choose only one answer, copy down the entire answer)
(A) $h=\frac{1}{2}$
(B) $h=\frac{4}{3}$
(C) $h=\frac{1}{4}$
(D) $h=\frac{2}{3}$
(E) None of these

Solution:

(a)(10pts) We use the u-substitution $u=\sin (x) \Rightarrow d u=\cos (x) d x$ and $x=0 \Rightarrow u=\sin (0)=0$ and $x=\pi / 2 \Rightarrow u=$ $\sin (\pi / 2)=1$. Thus

$$
\int_{0}^{\pi / 2} \sin ^{2}(x) \cos (x) d x=\int_{0}^{1} u^{2} d u=\left.\frac{u^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}
$$

(b)(10pts) By the Fundamental Theorem of Calculus we have

$$
f^{\prime}(x)=\frac{d}{d x}\left[\int_{4}^{x^{2}} \frac{t-1}{t^{2}+1} d t\right]=\frac{x^{2}-1}{\left(x^{2}\right)^{2}+1} \cdot 2 x=\frac{2 x\left(x^{2}-1\right)}{x^{4}+1} \Rightarrow f^{\prime}(2)=\frac{2 \cdot 2 \cdot\left(2^{2}-1\right)}{2^{4}+1}=\frac{4 \cdot 3}{17}=\frac{12}{17}
$$

(c)(4pts) Choice (B). Discussion: In the case that $f(x) \geq 0$, the height of the rectangle should equal the average value of $f(x)$ since

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \Rightarrow f_{\text {ave }} \cdot(b-a)=\int_{a}^{b} f(x) d x=\text { Area below } f(x), \text { for } a \leq x \leq b,
$$

and, in this case, we have

$$
f_{\text {ave }}=\frac{1}{4-0} \int_{0}^{4} \sqrt{x} d x=\left.\frac{1}{4}\left[\frac{2}{3} x^{3 / 2}\right]\right|_{0} ^{4}=\frac{1}{4}\left[\frac{2}{3} \cdot 2^{3}\right]=\frac{1}{4} \cdot \frac{16}{3}=\frac{4}{3} \Rightarrow \text { let } h=\frac{4}{3} \Rightarrow \text { Choice (B). }
$$

