INSTRUCTIONS: Books, notes, and electronic devices are not permitted. Write (1) your full name, (2) 1345/Exam 2, (3) lecture number/instructor name and (4) SPRING 2022 on the front of your bluebook. Do all problems. Start each problem on a new page. $\overline{\text { Box }}$ your answers. A correct answer with incorrect or no supporting work may receive no credit, while an incorrect answer with relevant work may receive partial credit. Justify your answers, show all work.

1. $(24 \mathrm{pts})$ The following problems are not related.
(a)(12pts) Find the value of the sum $\sum_{i=1}^{n} \frac{1}{n}\left[\frac{i}{n}+\frac{i^{2}}{n^{2}}\right]$ in terms of $n$. (Do not take any limits.). You may or may not find the following formulas useful:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \text { and } \quad \sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

(b)(12pts) Use the Fundamental Theorem of Calculus to evaluate the integral: $\int_{0}^{2}\left(2-x^{2}\right) d x$
2. (28pts) Start this problem on a new page. The following problems are not related.
(a)(12pts) Approximate the area under the curve $y=x^{2}+2 x+4$ from $x=0$ to $x=6$ with a Riemann sum using $n=3$ subintervals of equal width and left endpoints (that is, find the approximation $L_{3}$ ).
(b)(12pts) Write the expression $\int_{2}^{5} f(x) d x+\int_{-2}^{2} f(t) d t-\int_{-2}^{-1} f(x) d x$ as a single integral in the form $\int_{a}^{b} f(x) d x$.
(c) (4pts) (Multiple Choice) Using right endpoints $\left(R_{n}\right)$ and subintervals of equal width, which limit below is equal to the definite integral $\int_{1}^{3} \frac{x}{x^{2}+4} d x$ ? (No justification necessary-Choose only one answer, copy down the entire answer.)
(A) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i / n}{(2 i / n)^{2}+4} \cdot \frac{2}{n}$
(B) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1+2 i / n}{(1+2 i / n)^{2}+4} \cdot \frac{2}{n}$
(C) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1+2(i-1) / n}{(1+2(i-1) / n)^{2}+4} \cdot \frac{2 i}{n}$
(D) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i / n}{(2 i / n)^{2}+4}$
3. (24pts) Start this problem on a new page. The following problems are not related.
(a)(12pts) Evaluate the definite integral $\int_{0}^{3}|x-2| d x$.
(b)(12pts) Use a $u$-substitution to evaluate the indefinite integral $\int x \sqrt{x-1} d x$. Show all work.
4. (24pts) Start this problem on a new page. The following problems are not related.
(a)(10pts) Evaluate the definite integral: $\int_{0}^{\pi / 2} \sin ^{2}(x) \cos (x) d x$
(b) (10pts) If $f(x)=\int_{4}^{x^{2}} \frac{t-1}{t^{2}+1} d t$, use the Fundamental Theorem of Calculus to find $f^{\prime}(2)$. Simplify your answer.
(c)(4pts) Suppose we have a rectangle of width $w=4$, what should the height, $h$, of the rectangle be so that the area of the rectangle and the area bounded by the curve $f(x)=\sqrt{x}$, for $0 \leq x \leq 4$, and the $x$-axis are the same?
(No justification necessary-Choose only one answer, copy down the entire answer)
(A) $h=\frac{1}{2}$
(B) $h=\frac{4}{3}$
(C) $h=\frac{1}{4}$
(D) $h=\frac{2}{3}$
(E) None of these

- END -

