1. (24pts) The following problems are not related.
(a) (12pts) Find all the intervals on which $g(x)=3 x^{5}-5 x^{3}$ is increasing or decreasing. Give your answer in interval notation. Show all work.
(b) (12pts) Find and classify any critical point(s) of $f(x)=x+2 \cos (x), 0 \leq x \leq \frac{\pi}{2}$. Classify the critical point using the 2nd Derivative Test. (You do not need to find the y-value of any critical point.)

Solution: (a) (12pts) Since $g(x)$ is a polynomial, the only critical points are the roots of $g^{\prime}(x)$ where

$$
g^{\prime}(x)=\left[3 x^{5}-5 x^{3}\right]^{\prime}=15 x^{4}-15 x^{2}=15 x^{2}\left(x^{2}-1\right)=15 x^{2}(x-1)(x+1) \Rightarrow g^{\prime}(x)=0 \text { only if } x=-1,0,1
$$

and checking (for example) the sign chart for $g^{\prime}(x)=15 x^{2}(x-1)(x+1)$ gives

thus $g(x)$ decreases on $(-1,0) \cup(0,1)$ and increases on $(-\infty,-1) \cup(1, \infty)$.
(b) (12pts) We first search for roots of $f^{\prime}(x)$ in $(0, \pi / 2)$ to find the critical points,

$$
f^{\prime}(x)=0 \Rightarrow[x+2 \cos (x)]^{\prime}=0 \Rightarrow 1-2 \sin (x)=0 \Rightarrow \sin (x)=\frac{1}{2} \Rightarrow x=\frac{\pi}{6} \in(0, \pi / 2)
$$

and, for the 2nd Derivative Test, note that

$$
f^{\prime \prime}(x)=[1-2 \sin (x)]^{\prime}=-2 \cos (x) \Rightarrow f^{\prime \prime}\left(\frac{\pi}{6}\right)=-2 \cos \left(\frac{\pi}{6}\right)=-2 \cdot \frac{\sqrt{3}}{2}=-\sqrt{3}<0 \Rightarrow \text { Concave down }
$$

so since $f^{\prime \prime}\left(\frac{\pi}{6}\right)<0$, by the 2 nd Derivative Test, we have a local max at $x=\frac{\pi}{6}$.
2. (28pts) Start this problem on a new page. The following problems are not related.
(a)(12pts) Consider the following problem: The monthly production of a light bulb company is $P=4 x y$ (in millions) where x is the cost of equipment and y is the cost of labor (in millions of dollars). The company needs to produce $P=1$ million units, which values of x and y will minimize the cost $C=x+y$? Answer the following questions: $(i)(4 \mathrm{pts})$ Is this is a minimization or maximization problem? Write down a function in terms of the two variables x and y that you would minimize (or maximize). (ii)(4pts) Use the given information to write an equation that relates the variables x and y. (iii)(4pts) Now using optimization find the value of x and y that satisfy this problem. Justify your answer by classifying your critical point(s) using either the 1st or 2nd Derivative Test.
(b) (12pts) Suppose we want to approximate the x-intercept of $f(x)=3 x^{2}-2$ using Newton's Method. What would the formula for x_{n+1} be? (To get full points for this question you must provide the explicit formula for x_{n+1} in terms of x_{n}, the generic formula for Newton's Method is not sufficient. You do not need to approximate the solution. Simplify your answer.)
(c)(4pts) Multiple Choice: If $F(x)=\frac{x}{x^{2}+1}$ is an antiderivative of $f(x)$ then $f(x)$ is equal to which choice below? (No justification necessary-Choose only one answer, copy down the entire answer.)
(A) $f(x)=\frac{x^{2} / 2}{x^{3} / 3+3 x}$
(B) $f(x)=\frac{1-x^{2}}{x^{4}+2 x^{2}+1}$
(C) $f(x)=\frac{1}{2 x}$
(D) $f(x)=\frac{1-x^{2}}{(x+1)^{2}}$
(E) None of These

Solution:

(a) $(i)(4 \mathrm{pts})$ This is a minimization problem and we wish to minimimize $C=x+y$.
(a) $(i i)(4 \mathrm{pts})$ The constraint is $P=1 \Leftrightarrow 4 x y=1$ which implies $y=\frac{1}{4 x}$ or $x=\frac{1}{4 y}$.
(a) (iii) (4pts) We have

$$
C=x+y=x+\frac{1}{4 x} \Rightarrow \frac{d C}{d x}=1-\frac{1}{4 x^{2}}=\frac{4 x^{2}-1}{4 x^{2}} \Rightarrow C^{\prime}(x)=0 \text { or undefined only if } x=0, \pm \frac{1}{2}
$$

but clearly we need $x>0$ so we have $x=\frac{1}{2}$.
Classify: Finally note that $\frac{d^{2} C}{d x}=\frac{2}{4 x^{3}}=\frac{1}{2 x^{3}}$ and $C^{\prime \prime}(1 / 2)>0$ which implies, by the $\underline{2 \text { nd Derivative Test that } x \text { is a }}$ (local and) absolute min (since we only have one critical point).

$$
\text { Thus } x=\frac{1}{2} \text { and } y=\frac{1}{4 x}=\frac{1}{2} \text { will minimize the cost } C=x+y \text { subject to } 4 x y=1 \text {. }
$$

(b) (12pts) We need to approximate a solution to $f(x)=0$. So, by Newton's Method, we have

$$
\begin{aligned}
f^{\prime}(x)=\left[3 x^{2}-2\right]^{\prime}=6 x & \Rightarrow x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{3 x_{n}^{2}-2}{6 x_{n}}=\frac{6 x_{n}^{2}-\left(3 x_{n}^{2}-2\right)}{6 x_{n}}=\frac{3 x_{n}^{2}+2}{6 x_{n}} \\
& \Rightarrow x_{n+1}=\frac{3 x_{n}^{2}+2}{6 x_{n}}, n=1,2, \ldots
\end{aligned}
$$

(c)(4pts) Choice B. Discussion: If $F(x)$ is an antiderivative of $f(x)$ then $F^{\prime}(x)=f(x)$ so, using the Quotient Rule, we have

$$
f(x)=F^{\prime}(x)=\frac{d}{d x}\left[\frac{x}{x^{2}+1}\right]=\frac{1 \cdot\left(x^{2}+1\right)-x \cdot 2 x}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{x^{4}+2 x^{2}+1} \Rightarrow \text { Choice (B). }
$$

3. $(24 \mathrm{pts})$ Start this problem on a new page. The following parts of this problem are not related.
(a) (10pts) Find any function $F(x)$ such that $F^{\prime}(x)=\frac{1+x^{5 / 2}}{x^{1 / 2}}$.
(b)(10pts) Find all inflection points of $g(x)=\frac{x^{5}}{20}-\frac{x^{4}}{6}$. Show all work and justify. (You do not need to find the y-value of any inflection point.)
(c)(4pts) Multiple Choice: Which graph below best matches the graph of the function $f(x)=\frac{3 x^{2}}{x^{2}-1}$?
(No justification necessary-Choose only one answer, clearly indicate your answer otherwise points will be deducted.)
Solution: (a)(10pts) Note that

$$
\int \frac{1+x^{5 / 2}}{x^{1 / 2}} d x=\int\left(\frac{1}{x^{1 / 2}}+\frac{x^{5 / 2}}{x^{1 / 2}}\right) d x=\int\left(x^{-1 / 2}+x^{2}\right) d x=\frac{x^{1 / 2}}{1 / 2}+\frac{x^{3}}{3}=2 x^{1 / 2}+\frac{x^{3}}{3}
$$

so we have $F(x)=2 x^{1 / 2}+\frac{x^{3}}{3}$ and, more generally, $F(x)=2 x^{1 / 2}+\frac{x^{3}}{3}+C$.
(b) (10pts) Since $g(x)$ is a polynomial, we only need to find and classify the roots of $g^{\prime \prime}(x)$ where

$$
g^{\prime}(x)=\left[\frac{x^{5}}{20}-\frac{x^{4}}{6}\right]^{\prime}=\frac{5 x^{4}}{20}-\frac{4 x^{3}}{6} \Rightarrow g^{\prime \prime}(x)=\frac{20 x^{3}}{20}-\frac{12 x^{2}}{6}=x^{3}-2 x^{2}=x^{2}(x-2)
$$

So $g^{\prime \prime}(x)=0 \Rightarrow x=0,2$ and now we classify these points using (for example) a sign chart for $g^{\prime \prime}(x)=x^{2}(x-2)$,
Sign chart for $g^{\prime \prime}(x)$

(c) $(4 \mathrm{pts})$ Graph (D). Discussion: Note that $f(x)=\frac{3 x^{2}}{x^{2}-1}$ has a horizontal asymptote at $y=3$ which eliminates Graph (A), and $f(x)<0$ for $x \in(-1,0)$ which eliminates Graph (B), and, finally, since $f(x)$ has vertical asymptotes at $x= \pm 1$, we can eliminate Graph (C) thus the best match from all these choice is Graph (D).

Graph (D)
4. (24pts) Start this problem on a new page. The following problems are not related.
(a) (12pts) Find the most general antiderivative of $f(t)=2 \sec (t) \tan (t)+\frac{1}{2 t^{2}}$. Show all work.
(b) (12pts) Suppose the acceleration of an object at any time t is given by $a(t)=3 t^{2}-4 t \mathrm{~m} / \mathrm{s}^{2}, t \geq 0$. Find the position, $s(t)$, at any time t if $v(1)=1 \mathrm{~m} / \mathrm{s}$ and $s(0)=2$. Show all work.

Solution: (a)(10pts) Note that

$$
\int\left[2 \sec (t) \tan (t)+\frac{1}{2 t^{2}}\right] d t=2 \int \sec (t) \tan (t) d t+\frac{1}{2} \int t^{-2} d t=2 \sec (t)+\frac{1}{2} \cdot \frac{t^{-1}}{-1}=2 \sec (t)-\frac{1}{2 t}+C
$$

(b) (10pts) Recall that $a(t)=v^{\prime}(t)$ thus

$$
v(t)=\int a(t) d t=\int\left(3 t^{2}-4 t\right) d t=t^{3}-4 \cdot \frac{t^{2}}{2}+C=t^{3}-2 t^{2}+C
$$

and $v(1)=1$ implies

$$
\begin{aligned}
1=v(1)=1^{3}-2 \cdot 1^{2}+C \Rightarrow 1=-1+C \Rightarrow C=2 & \Rightarrow v(t)=t^{3}-2 t^{2}+2=s^{\prime}(t) \\
& \Rightarrow s(t)=\frac{t^{4}}{4}-\frac{2}{3} t^{3}+2 t+\widetilde{C}
\end{aligned}
$$

and $s(0)=2$ implies that $\widetilde{C}=2$ so $s(t)=\frac{t^{4}}{4}-\frac{2}{3} t^{3}+2 t+2$.

