1. (24pts) The following problems are not related.

(a) (12pts) Find all the intervals on which \(g(x) = 3x^5 - 5x^3 \) is increasing or decreasing. Give your answer in interval notation. Show all work.

(b) (12pts) Find and classify any critical point(s) of \(f(x) = x + 2 \cos(x), \ 0 \leq x \leq \frac{\pi}{2} \). Classify the critical point using the 2nd Derivative Test. (You do not need to find the y-value of any critical point.)

Solution: (a) (12pts) Since \(g(x) \) is a polynomial, the only critical points are the roots of \(g'(x) \) where

\[
g'(x) = [3x^5 - 5x^3]' = 15x^4 - 15x^2 = 15x^2(x^2 - 1) = 15x^2(x - 1)(x + 1) \Rightarrow g'(x) = 0 \text{ only if } x = -1, 0, 1
\]

and checking (for example) the sign chart for \(g'(x) = 15x^2(x - 1)(x + 1) \) gives

\[
\text{Sign chart for } g'(x)
\]

\[
g'(x) \leftarrow + \rightarrow - - \rightarrow + \]

thus \(g(x) \) decreases on \((-1, 0) \cup (0, 1)\) and increases on \((-\infty, -1) \cup (1, \infty)\).

(b) (12pts) We first search for roots of \(f'(x) \) in \((0, \pi/2)\) to find the critical points,

\[
f'(x) = 0 \Rightarrow [x + 2 \cos(x)]' = 0 \Rightarrow 1 - 2 \sin(x) = 0 \Rightarrow \sin(x) = \frac{1}{2} \Rightarrow x = \frac{\pi}{6} \in (0, \pi/2)
\]

and, for the 2nd Derivative Test, note that

\[
f''(x) = [1 - 2 \sin(x)]' = -2 \cos(x) \Rightarrow f''\left(\frac{\pi}{6}\right) = -2 \cos\left(\frac{\pi}{6}\right) = -2 \cdot \frac{\sqrt{3}}{2} = -\sqrt{3} < 0 \Rightarrow \text{Concave down}
\]

so since \(f''\left(\frac{\pi}{6}\right) < 0 \), by the 2nd Derivative Test, we have a local max at \(x = \frac{\pi}{6} \).

2. (28pts) Start this problem on a new page. The following problems are not related.

(a) (12pts) Consider the following problem: The monthly production of a light bulb company is \(P = 4xy \) (in millions) where \(x \) is the cost of equipment and \(y \) is the cost of labor (in millions of dollars). The company needs to produce \(P = 1 \) million units, which values of \(x \) and \(y \) will minimize the cost \(C = x + y \)? Answer the following questions:

(i)(4pts) Is this a minimization or maximization problem? Write down a function in terms of the two variables \(x \) and \(y \) that you would minimize (or maximize). (iii)(4pts) Use the given information to write an equation that relates the variables \(x \) and \(y \).

(iii)(4pts) Now using optimization find the value of \(x \) and \(y \) that satisfy this problem. Justify your answer by classifying your critical point(s) using either the 1st or 2nd Derivative Test.

(b) (12pts) Suppose we want to approximate the \(x \)-intercept of \(f(x) = 3x^2 - 2 \) using Newton's Method. What would the formula for \(x_{n+1} \) be? (To get full points for this question you must provide the explicit formula for \(x_{n+1} \) in terms of \(x_n \), the generic formula for Newton’s Method is not sufficient. You do not need to approximate the solution. Simplify your answer.)

(c)(4pts) Multiple Choice: If \(F(x) = \frac{x}{x^2 + 1} \) is an antiderivative of \(f(x) \) then \(f(x) \) is equal to which choice below? (No justification necessary. Choose only one answer, copy down the entire answer.)
(A) \(f(x) = \frac{x^2/2}{x^3/3 + 3x} \) \hspace{1cm} (B) \(f(x) = \frac{1 - x^2}{x^4 + 2x^2 + 1} \) \hspace{1cm} (C) \(f(x) = \frac{1}{2x} \) \hspace{1cm} (D) \(f(x) = \frac{1 - x^2}{(x + 1)^2} \) \hspace{1cm} (E) None of these

Solution:

(a)(i)(4pts) This is a **minimization** problem and we wish to minimize \(C = x + y \).

(a)(ii)(4pts) The constraint is \(P = 1 \Leftrightarrow 4xy = 1 \) which implies \(y = \frac{1}{4x} \) or \(x = \frac{1}{4y} \).

(a)(iii)(4pts) We have
\[
C = x + y = x + \frac{1}{4x} \Rightarrow \frac{dC}{dx} = 1 - \frac{1}{4x^2} = \frac{4x^2 - 1}{4x^2} \Rightarrow C'(x) = 0 \text{ or undefined only if } x = 0, \pm \frac{1}{2}
\]
but clearly we need \(x > 0 \) so we have \(x = \frac{1}{2} \).

Classify: Finally note that \(\frac{d^2C}{dx^2} = \frac{2}{4x^3} = \frac{1}{2x^3} \) and \(C''(1/2) > 0 \) which implies, by the 2nd Derivative Test that \(x \) is a (local and) absolute min (since we only have one critical point).

Thus \(x = \frac{1}{2} \) and \(y = \frac{1}{4x} = \frac{1}{2} \) will minimize the cost \(C = x + y \) subject to \(4xy = 1 \).

(b)(12pts) We need to approximate a solution to \(f(x) = 0 \). So, by Newton’s Method, we have
\[
f'(x) = [3x^2 - 2]' = 6x \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{3x_n^2 - 2}{6x_n} = \frac{6x_n^2 - (3x_n^2 - 2)}{6x_n} = \frac{3x_n^2 + 2}{6x_n}
\]
\[
\Rightarrow x_{n+1} = \frac{3x_n^2 + 2}{6x_n}, \quad n = 1, 2, \ldots.
\]

(c)(4pts) **Choice B.** Discussion: If \(F(x) \) is an antiderivative of \(f(x) \) then \(F'(x) = f(x) \) so, using the Quotient Rule, we have
\[
f(x) = F'(x) = \frac{d}{dx} \left[\frac{x}{x^2 + 1} \right] = \frac{1 \cdot (x^2 + 1) - x \cdot 2x}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{x^4 + 2x^2 + 1} \Rightarrow \text{Choice (B)}. \]

3. (24pts) Start this problem on a **new** page. The following parts of this problem are not related.

(a)(10pts) Find any function \(F(x) \) such that \(F'(x) = \frac{1 + x^{5/2}}{x^{1/2}} \).

(b)(10pts) Find all inflection points of \(g(x) = x^5 \frac{5x^4}{20} - x^4 \frac{4x^3}{6} \). Show all work and justify. (You do not need to find the \(y \)-value of any inflection point.)

(c)(4pts) Multiple Choice: Which graph below best matches the graph of the function \(f(x) = \frac{3x^2}{x^3 - 1} \)?

No justification necessary - Choose only one answer, clearly indicate your answer otherwise points will be deducted.

Solution: (a)(10pts) Note that
\[
\int \frac{1 + x^{5/2}}{x^{1/2}} \, dx = \int \left(\frac{1}{x^{1/2}} + \frac{x^{5/2}}{x^{1/2}} \right) \, dx = \int (x^{-1/2} + x^2) \, dx = \frac{x^{1/2}}{1/2} + \frac{x^3}{3} = 2x^{1/2} + x^3/3
\]
so we have \(F(x) = 2x^{1/2} + x^3/3 \) and, more generally, \(F(x) = 2x^{1/2} + \frac{x^3}{3} + C \).

(b)(10pts) Since \(g(x) \) is a polynomial, we only need to find and classify the roots of \(g''(x) \) where
\[
g'(x) = \left[x^5 \frac{5x^4}{20} - x^4 \frac{4x^3}{6} \right]' = 5x^4 \frac{5x^4}{20} - 4x^3 \frac{4x^3}{6} \Rightarrow g''(x) = \frac{20x^3}{20} - \frac{12x^2}{6} = x^3 - 2x^2 = x^2(x - 2).
\]
So \(g''(x) = 0 \Rightarrow x = 0, 2 \) and now we classify these points using (for example) a sign chart for \(g''(x) = x^2(x - 2) \),

Sign chart for \(g''(x) \)

\[
g''(x) \begin{cases} \begin{array}{c}
\cap \\
0 \\
\cap \\
2 \\
\cup \\
\Rightarrow \text{Inflection Point at } (2, g(2)).
\end{array} \end{cases}
\]

(c)(4pts) \textbf{Graph (D). Discussion:} Note that \(f(x) = \frac{3x^2}{x^2 - 1} \) has a horizontal asymptote at \(y = 3 \) which eliminates Graph (A), and \(f(x) < 0 \) for \(x \in (-1, 0) \) which eliminates Graph (B), and, finally, since \(f(x) \) has vertical asymptotes at \(x = \pm 1 \), we can eliminate Graph (C) thus the \textit{best} match from all these choice is Graph (D).

![Graph (D)](image)

4. (24pts) Start this problem on a \textbf{new} page. The following problems are not related.

(a)(12pts) Find the most general antiderivative of \(f(t) = 2 \sec(t) \tan(t) + \frac{1}{2t^2} \). Show all work.

(b)(12pts) Suppose the acceleration of an object at any time \(t \) is given by \(a(t) = 3t^2 - 4t \) m/s\(^2\), \(t \geq 0 \). Find the position, \(s(t) \), at any time \(t \) if \(v(1) = 1 \) m/s and \(s(0) = 2 \). Show all work.

Solution: (a)(10pts) Note that

\[
\int \left[2 \sec(t) \tan(t) + \frac{1}{2t^2} \right] dt = 2 \int \sec(t) \tan(t) dt + \frac{1}{2} \int t^{-2} dt = 2 \sec(t) + \frac{1}{2} \cdot \frac{t^{-1}}{-1} = 2 \sec(t) - \frac{1}{2t} + C.
\]

(b)(10pts) Recall that \(a(t) = v'(t) \) thus

\[
v(t) = \int a(t) dt = \int (3t^2 - 4t) dt = t^3 - 4 \cdot \frac{t^2}{2} + C = t^3 - 2t^2 + C
\]

and \(v(1) = 1 \) implies

\[
1 = v(1) = 1^3 - 2 \cdot 1^2 + C \Rightarrow 1 = -1 + C \Rightarrow C = 2 \Rightarrow v(t) = t^3 - 2t^2 + 2 = s'(t)
\]

\[
\Rightarrow s(t) = \frac{t^4}{4} - \frac{2}{3}t^3 + 2t + \tilde{C}
\]

and \(s(0) = 2 \) implies that \(\tilde{C} = 2 \) so

\[
s(t) = \frac{t^4}{4} - \frac{2}{3}t^3 + 2t + 2.
\]