INSTRUCTIONS: Books, notes, and electronic devices are not permitted. Write (1) your full name, (2) 1345/Exam 1, (3) lecture number/instructor name and (4) SPRING 2022 on the front of your bluebook. Do all problems. Start each problem on a new page. $\overline{\text { Box }}$ your answers. A correct answer with incorrect or no supporting work may receive no credit, while an incorrect answer with relevant work may receive partial credit. Justify your answers, show all work.

1. $(24 \mathrm{pts})$ The following problems are not related.
(a)(12pts) Find all the intervals on which $g(x)=3 x^{5}-5 x^{3}$ is increasing or decreasing. Give your answer in interval notation. Show all work.
(b) (12pts) Find and classify any critical point(s) of $f(x)=x+2 \cos (x), 0 \leq x \leq \frac{\pi}{2}$. Classify the critical point using the 2nd Derivative Test. (You do not need to find the y-value of any critical point.)
2. (28pts) Start this problem on a new page. The following problems are not related.
(a)(12pts) Consider the following problem: The monthly production of a light bulb company is $P=4 x y$ (in millions) where x is the cost of equipment and y is the cost of labor (in millions of dollars). The company needs to produce $P=1$ million units, which values of x and y will minimize the cost $C=x+y$? Answer the following questions: (i)(4pts) Is this is a minimization or maximization problem? Write down a function in terms of the two variables x and y that you would minimize (or maximize). (ii)(4pts) Use the given information to write an equation that relates the variables x and y. (iii)(4pts) Now using optimization find the value of x and y that satisfy this problem. Justify your answer by classifying your critical point(s) using either the 1st or 2nd Derivative Test.
(b)(12pts) Suppose we want to approximate the x-intercept of $f(x)=3 x^{2}-2$ using Newton's Method. What would the formula for x_{n+1} be? (To get full points for this question you must provide the explicit formula for x_{n+1} in terms of x_{n}, the generic formula for Newton's Method is not sufficient. You do not need to approximate the solution. Simplify your answer.)
(c)(4pts) Multiple Choice: If $F(x)=\frac{x}{x^{2}+1}$ is an antiderivative of $f(x)$ then $f(x)$ is equal to which choice below? (No justification necessary - Choose only one answer, copy down the entire answer.)
(A) $f(x)=\frac{x^{2} / 2}{x^{3} / 3+3 x}$
(B) $f(x)=\frac{1-x^{2}}{x^{4}+2 x^{2}+1}$
(C) $f(x)=\frac{1}{2 x}$
(D) $f(x)=\frac{1-x^{2}}{(x+1)^{2}}$
(E) None of these

PROBLEMS \#3 \& \#4 ON THE OTHER SIDE

3. $(24 \mathrm{pts})$ Start this problem on a new page. The following parts of this problem are not related.
(a) (10pts) Find any function $F(x)$ such that $F^{\prime}(x)=\frac{1+x^{5 / 2}}{x^{1 / 2}}$.
(b)(10pts) Find all inflection points of $g(x)=\frac{x^{5}}{20}-\frac{x^{4}}{6}$. Show all work and justify. (You do not need to find the y-value of any inflection point.)
(c)(4pts) Multiple Choice: Which graph below best matches the graph of the function $f(x)=\frac{3 x^{2}}{x^{2}-1}$?
(No justification necessary-Choose only one answer, clearly indicate your answer otherwise points will be deducted.)

Graph (A)

Graph (C)

Graph (B)

Graph (D)
4. (24pts) Start this problem on a new page. The following problems are not related.
(a) (12pts) Find the most general antiderivative of $f(t)=2 \sec (t) \tan (t)+\frac{1}{2 t^{2}}$. Show all work.
(b)(12pts) Suppose the acceleration of an object at any time t is given by $a(t)=3 t^{2}-4 t \mathrm{~m} / \mathrm{s}^{2}, t \geq 0$. Find the position, $s(t)$, at any time t if $v(1)=1 \mathrm{~m} / \mathrm{s}$ and $s(0)=2$. Show all work.

