1. (32 pts) The position function of a particle is given by $s(t)=4 \sqrt{t}-t$ on the interval $1 \leq t \leq 16$, where position is in meters and time is in seconds.
(a) Determine the particle's velocity function $v(t)$. Include the correct unit of measurement.

Solution:

$$
\begin{aligned}
& s(t)=4 \sqrt{t}-t=4 t^{1 / 2}-t \\
& v(t)=s^{\prime}(t)=2 t^{-1 / 2}-1=\frac{2}{\sqrt{t}}-1 \mathrm{~m} / \mathrm{s}, \quad 1<t<16
\end{aligned}
$$

(b) Determine the total distance traveled by the particle on the interval $1 \leq t \leq 16$. Include the correct unit of measurement.

Solution:

$v(t)=\frac{2}{\sqrt{t}}-1=0 \quad \Rightarrow \quad \frac{2}{\sqrt{t}}=1 \quad \Rightarrow \quad \sqrt{t}=2 \quad \Rightarrow \quad t=4$
Since $v(t)$ changes sign at $t=4$, we need to calculate the distances traveled during the time intervals $[1,4]$ and $[4,16]$ separately, and add those results together.

Distance traveled on time interval $[1,4]=|s(4)-s(1)|$
Distance traveled on time interval $[4,16]=|s(16)-s(4)|$
$s(1)=4 \sqrt{1}-1=4-1=3$
$s(4)=4 \sqrt{4}-4=8-4=4$
$s(16)=4 \sqrt{16}-16=16-16=0$

Distance traveled on time interval $[1,4]=|s(4)-s(1)|=|4-4|=1$
Distance traveled on time interval $[4,16]=|s(16)-s(4)|=|0-4|=4$

Therefore, the total distance traveled between $t=1$ and $t=16$ seconds is $1+4=5 \mathrm{~m}$
(c) i. Verify that all hypotheses of the Mean Value Theorem are satisfied for the given position function $s(t)=$ $4 \sqrt{t}-t$ on the interval $1 \leq t \leq 16$.

Solution:

$s(t)$ is continuous on $[1,16]$ and differentiable on $(1,16)$
ii. Use the Mean Value Theorem to determine all time values c on the interval $1 \leq t \leq 16$, if any, for which the instantaneous velocity of the particle equals the average velocity of the particle on that interval. Include the correct unit of measurement.

Solution:

The Mean Value Theorem states that since the hypotheses have been satisfied, there exists at least one number c on the interval $(1,16)$ such that
$s^{\prime}(c)=\frac{s(16)-s(1)}{16-1}=\frac{0-3}{15}=-\frac{1}{5}$

Therefore, using the result from part (a), we have
$v(c)=\frac{2}{\sqrt{c}}-1=-\frac{1}{5}$
$\frac{2}{\sqrt{c}}=\frac{4}{5}$
$\sqrt{c}=\frac{5}{2}$
$c=\frac{25}{4} \mathrm{sec}$
2. (11 pts) Let v represent a person's walking speed, expressed in miles per hour, and let p represent the corresponding walking pace, expressed in minutes per mile. The pace can be expressed as the following function of speed:

$$
p(v)=\frac{60}{v}, \quad v>0
$$

(a) Find the linearization $L(v)$ that approximates $p(v)$ near $v=4$.

Solution:
$p(v) \approx L(v)=p(4)+p^{\prime}(4)(v-4)$
$p(4)=\frac{60}{4}=15$
$p^{\prime}(v)=-\frac{60}{v^{2}} \quad \Rightarrow \quad p^{\prime}(4)=-\frac{60}{4^{2}}=-\frac{15}{4}$
$L(v)=15-\frac{15}{4}(v-4)$
(b) Use your linearization from part (a) to estimate the walking pace of a person moving at 4.2 miles per hour. Include the correct unit of measurement. You must use linearization to earn credit.

Solution:

$p(4.2) \approx L(4.2)=15-\frac{15}{4}(4.2-4)=15-\frac{15}{4} \cdot \frac{1}{5}=15-\frac{3}{4}=14.25$ minutes per mile
3. (26 pts) Consider the function $f(x)=\sin x+\cos ^{2} x$ on the interval $[0,2 \pi / 3]$.
(a) Identify all critical numbers of f on the specified interval.

Solution:

Critical numbers are values of x in the domain of f such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. There are no critical numbers of the latter type for this function.
$f^{\prime}(x)=\cos x+2 \cos x \cdot(-\sin x)=\cos x(1-2 \sin x)=0$
$x=\pi / 2$ is the only value of x in the specified domain that satisfies $\cos x=0$.
$x=\pi / 6$ is the only value of x in the specified domain that satisfies $\sin x=1 / 2$.
Therefore, the critical numbers of f on the specified domain are $\frac{\pi}{6}, \frac{\pi}{2}$
(b) Use the Closed Interval Method to find the absolute maximum and minimum values of f on the specified interval. Clearly identify all x values that are associated with the absolute maximum function value and all x values that are associated with the absolute minimum function value. Note that $\sqrt{3} \approx 1.7$.

Solution:

The Closed Interval Method involves evaluating the function at the domain endpoints and at the critical numbers.
$f(0)=1+0^{2}=1$
$f(\pi / 6)=1 / 2+(\sqrt{3} / 2)^{2}=5 / 4$
$f(\pi / 2)=1+0^{2}=1$
$f(2 \pi / 3)=\sqrt{3} / 2+(-1 / 2)^{2}=\sqrt{3} / 2+1 / 4=(2 \sqrt{3}+1) / 4 \approx 4.4 / 4$

Since $1<(2 \sqrt{3}+1) / 4<5 / 4$, the absolute maximum value of f occurs at the point $(\pi / 6,5 / 4)$ and the absolute minimum value of f occurs at the points $(0,1)$ and $(\pi / 2,1)$
4. (26 pts) Find an equation of each tangent line, if any, to the curve $2 x^{3}+2 y^{2}=5 x y$ at $x=1$.

Solution:

We begin by executing implicit differentiation, as follows:
$\frac{d}{d x}\left[2 x^{3}+2 y^{2}\right]=\frac{d}{d x}[5 x y]$
$6 x^{2}+4 y y^{\prime}=5\left(x y^{\prime}+y\right)$
$(4 y-5 x) y^{\prime}=5 y-6 x^{2}$
$y^{\prime}=\frac{5 y-6 x^{2}}{4 y-5 x}$

Next, we determine the y-coordinate value of each point on the given curve that has an x-coordinate value of 1 .
$(2)(1)^{3}+2 y^{2}=(5)(1) y$
$2 y^{2}-5 y+2=0$
The quadratic formula indicates that $y=\frac{-(-5) \pm \sqrt{(-5)^{2}-(4)(2)(2)}}{(2)(2)}=\frac{5 \pm 3}{4} \Rightarrow y=\frac{1}{2}, 2$

So, there are two points on the given curve at $x=1:(1,1 / 2)$ and $(1,2)$. The slopes of the tangent lines at those points are:
$x=1, y=1 / 2: \quad y^{\prime}=\frac{(5)(1 / 2)-(6)(1)^{2}}{(4)(1 / 2)-(5)(1)}=\frac{5 / 2-6}{-3}=\frac{5-12}{-6}=\frac{7}{6}$
$x=1, y=2: \quad y^{\prime}=\frac{(5)(2)-(6)(1)^{2}}{(4)(2)-(5)(1)}=\frac{10-6}{3}=\frac{4}{3}$

Therefore, point-slope forms of the tangent lines are $y-\frac{1}{2}=\frac{7}{6}(x-1)$ and $y-2=\frac{4}{3}(x-1)$
5. (18 pts) Two bowls of identical size are both hemispheres of radius 2 ft . When such a bowl contains water having a depth of $y \mathrm{ft}$, as depicted below, the corresponding volume of water in the bowl is given by the following function:
$V=\pi y^{2}(2-y / 3), \quad 0 \leq y \leq 2$

(a) Suppose bowl A is being filled at a constant rate of $8 \pi / 9$ cubic ft per minute. How fast is the depth of the water increasing when the water is 1 ft deep? Simplify your answer fully and include the correct unit of measurement.
(b) Suppose bowl B is being filled in such a way that its water depth is increasing at a constant rate of $1 / 3 \mathrm{ft}$ per minute. How fast is the volume of the water increasing when the water is 1 ft deep? Simplify your answer fully and include the correct unit of measurement.

Solution:

The Chain Rule indicates that $\frac{d V}{d t}=\frac{d V}{d y} \cdot \frac{d y}{d t}$
$V=\pi y^{2}\left(2-\frac{y}{3}\right)=2 \pi y^{2}-\frac{\pi}{3} y^{3}$
$\frac{d V}{d y}=4 \pi y-\left.\pi y^{2} \quad \Rightarrow \quad \frac{d V}{d y}\right|_{y=1}=4 \pi-\pi=3 \pi$
(a) $\frac{d V}{d t}=\frac{8 \pi}{9}$

$$
y=1: \quad \frac{8 \pi}{9}=3 \pi \cdot \frac{d y}{d t} \quad \Rightarrow \quad \frac{d y}{d t}=\frac{8 \pi}{9} \cdot \frac{1}{3 \pi}=\frac{8}{27} \mathrm{ft} \text { per min }
$$

(b) $\frac{d y}{d t}=\frac{1}{3}$

$$
y=1: \quad \frac{d V}{d t}=3 \pi \cdot \frac{1}{3}=\pi \text { cubic ft per min }
$$

6. (15 pts) Determine $g^{\prime}(x)$ for the function $g(x)=\sqrt{3 x+1}$ by using the definition of derivative. You must obtain g^{\prime} by evaluating an appropriate limit to earn credit.

Solution:

The definition of derivative indicates that $g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{3(x+h)+1}-\sqrt{3 x+1}}{h}$

Begin by multiplying the numerator and the denominator by the numerator's conjugate.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{3(x+h)+1}-\sqrt{3 x+1}}{h} \cdot \frac{\sqrt{3(x+h)+1}+\sqrt{3 x+1}}{\sqrt{3(x+h)+1}+\sqrt{3 x+1}} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{3(x+h)+1})^{2}-(\sqrt{3 x+1})^{2}}{h(\sqrt{3(x+h)+1}+\sqrt{3 x+1})} \\
& =\lim _{h \rightarrow 0} \frac{(3 x+3 h+1)-(3 x+1)}{h(\sqrt{3 x+3 h+1}+\sqrt{3 x+1})} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{3 x+3 h+1}+\sqrt{3 x+1})} \\
& =\lim _{h \rightarrow 0} \frac{3}{\sqrt{3 x+3 h+1}+\sqrt{3 x+1}} \\
& =\frac{3}{\sqrt{3 x+0+1}+\sqrt{3 x+1}}=\frac{3}{2 \sqrt{3 x+1}}
\end{aligned}
$$

7. $(22 \mathrm{pts})$ Consider the function $h(x)=\frac{\sin x}{x(x-\pi / 2)}$.
(a) Find the (x, y) coordinates of every removable discontinuity of $h(x)$, if any exist. Support your answer by evaluating the appropriate limit(s).

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} h(x) & =\lim _{x \rightarrow 0} \frac{\sin x}{x(x-\pi / 2)}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{(x-\pi / 2)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{(x-\pi / 2)}=(1)\left(\frac{1}{0-\pi / 2}\right)=-\frac{2}{\pi}
\end{aligned}
$$

Since the preceding limit is finite, h has a removable discontinuity at the point $\left(0,-\frac{2}{\pi}\right)$
(b) Find the equation of every vertical asymptote of $y=h(x)$, if any exist. Support your answer by evaluating the appropriate limit(s).

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\sin x}{x(x-\pi / 2)} \rightarrow \frac{\sin (\pi / 2)}{(\pi / 2)\left(0^{-}\right)} \rightarrow \frac{1}{(\pi / 2)\left(0^{-}\right)} \rightarrow \frac{(2 / \pi)}{0^{-}} \rightarrow-\infty \\
& \lim _{x \rightarrow \frac{\pi^{+}}{2}} \frac{\sin x}{x(x-\pi / 2)} \rightarrow \frac{\sin (\pi / 2)}{(\pi / 2)\left(0^{+}\right)} \rightarrow \frac{1}{(\pi / 2)\left(0^{+}\right)} \rightarrow \frac{(2 / \pi)}{0^{+}} \rightarrow \infty
\end{aligned}
$$

Since at least one of the preceding two limits is infinite (in fact, both are infinite for this function), $f(x)$ has a vertical asymptote at $x=\pi / 2$

