1. (30 pts) Determine $\frac{d y}{d x}$ for each of the following.
(a) $y=\sin ^{4}\left(x^{3}\right)$
(b) $x^{2}+x y+y^{3}=4$
(c) $y=\frac{2 x^{2}+1}{x \cos x} \quad$ After fully differentiating, do not algebraically simplify your answer any further.

Solution:

(a)

$$
\begin{aligned}
\frac{d}{d x}\left[\sin ^{4}\left(x^{3}\right)\right] & =4 \sin ^{3}\left(x^{3}\right) \frac{d}{d x}\left[\sin \left(x^{3}\right)\right]=4 \sin ^{3}\left(x^{3}\right) \cos \left(x^{3}\right) \frac{d}{d x}\left[x^{3}\right] \\
& =4 \sin ^{3}\left(x^{3}\right) \cos \left(x^{3}\right)\left(3 x^{2}\right)=12 x^{2} \sin ^{3}\left(x^{3}\right) \cos \left(x^{3}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{2}+x y+y^{3}\right]=\frac{d}{d x}[4] \\
& 2 x+x y^{\prime}+y+3 y^{2} y^{\prime}=0 \\
& y^{\prime}\left(x+3 y^{2}\right)=-(2 x+y) \\
& y^{\prime}=-\frac{2 x+y}{x+3 y^{2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{2 x^{2}+1}{x \cos x}\right] & =\frac{x \cos x \cdot \frac{d}{d x}\left[2 x^{2}+1\right]-\left(2 x^{2}+1\right) \cdot \frac{d}{d x}[x \cos x]}{(x \cos x)^{2}} \\
& =\frac{x \cos x \cdot(4 x)-\left(2 x^{2}+1\right)\left(x \cdot \frac{d}{d x}[\cos x]+\cos x \cdot \frac{d}{d x}[x]\right)}{(x \cos x)^{2}} \\
& =\frac{x \cos x \cdot(4 x)-\left(2 x^{2}+1\right)(-x \sin x+\cos x)}{(x \cos x)^{2}}
\end{aligned}
$$

2. (25 pts) Parts (a) and (b) are unrelated.
(a) The position function of Particle P is given by $s(t)=2 / t+t / 2$, where s is in meters, t is in seconds, and $t \geq 1$.
i. Find the particle's velocity function $v(t)$. Include the correct unit of measurement.
ii. Find the distance traveled by the particle between $t=1$ and $t=8$ seconds. Include the correct unit of measurement.
(b) The velocity function of Particle Q is given by $v(t)=\tan t-t^{2} / 4$, where v is in miles per hour, t is in hours, and $3 \pi / 2<t<5 \pi / 2$.
i. Find the particle's acceleration function $a(t)$. Include the correct unit of measurement.
ii. Find the acceleration of the particle at $t=2 \pi$ hours. Include the correct unit of measurement.

Solution:

(a) i. $s(t)=2 t^{-1}+\frac{1}{2} t$

$$
v(t)=s^{\prime}(t)=-2 t^{-2}+\frac{1}{2}=-\frac{2}{t^{2}}+\frac{1}{2} \mathrm{~m} / \mathrm{s}
$$

ii. $s^{\prime}(t)=0=-\frac{2}{t^{2}}+\frac{1}{2}$

$$
t^{2}=4 \Rightarrow t=2 \quad(t=-2 \text { is not in the stated domain of } s)
$$

The sign of $s^{\prime}(t)$ changes at $t=2$. Therefore,

$$
\begin{aligned}
D & =|s(2)-s(1)|+|s(8)-s(2)|=\left|(1+1)-\left(2+\frac{1}{2}\right)\right|+\left|\left(\frac{1}{4}+4\right)-(1+1)\right| \\
D & =\left|-\frac{1}{2}\right|+\left|\frac{1}{4}+2\right|=\frac{11}{4} \mathrm{~m}
\end{aligned}
$$

(b)
i. $a(t)=v^{\prime}(t)=\sec ^{2} t-\frac{t}{2}$ miles $/ \mathrm{hr}^{2}$
ii. $a(2 \pi)=\sec ^{2}(2 \pi)-\frac{2 \pi}{2}=1-\pi$ miles $/ \mathrm{hr}^{2}$
3. (23 pts) Parts (a) and (b) are unrelated.
(a) Find the equations of the tangent and normal lines to the curve $y=x^{3 / 2}-x^{1 / 2}$ at $x=4$.
(b) Find all values of x on the interval $[0, \pi]$ for which the curve $y=\sin ^{2} x-\sin x$ has a horizontal tangent line.

Solution:

(a) $y^{\prime}(x)=\frac{3}{2} x^{1 / 2}-\frac{1}{2} x^{-1 / 2}=x^{-1 / 2}\left(\frac{3}{2} x-\frac{1}{2}\right)=\frac{x^{-1 / 2}}{2}(3 x-1)=\frac{3 x-1}{2 \sqrt{x}}$
$y^{\prime}(4)=\frac{11}{4}$
$y(4)=4^{3 / 2}-4^{1 / 2}=8-2=6$

Tangent line: $y-6=\frac{11}{4}(x-4)$

Normal line: $y-6=-\frac{4}{11}(x-4)$
(b) $y^{\prime}(x)=2 \sin x \cos x-\cos x=\cos x(2 \sin x-1)=0$
$\cos x=0 \Rightarrow x=\frac{\pi}{2}$
$2 \sin x-1=0 \Rightarrow \sin x=\frac{1}{2} \Rightarrow x=\frac{\pi}{6}, \frac{5 \pi}{6}$
Therefore, $x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$
4. (22 pts) Parts (a) and (b) are unrelated.
(a) Determine $f^{\prime}(x)$ for the function $f(x)=\frac{1}{x+1}$ by using the definition of derivative.

You must obtain f^{\prime} by evaluating the appropriate limit to earn credit.
(b) Find the values of b and c for which the following function $g(x)$ is differentiable at $x=2$.

$$
g(x)=\left\{\begin{array}{lll}
\frac{3}{8} x^{3} & , & x<2 \\
-x^{2}+b x+c & , & x \geq 2
\end{array}\right.
$$

You do not have to explicitly state the one-sided limits that are being evaluated.

Solution:

(a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)+1}-\frac{1}{x+1}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{x+h+1}-\frac{1}{x+1}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{(x+1)-(x+h+1)}{(x+h+1)(x+1)}\right]=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-h}{(x+h+1)(x+1)}\right] \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+h+1)(x+1)}=-\frac{1}{(x+1)^{2}}
\end{aligned}
$$

(b)

$$
g^{\prime}(x)=\left\{\begin{array}{lll}
\frac{9}{8} x^{2} & , & x<2 \\
-2 x+b & , & x>2
\end{array}\right.
$$

In order for g to be differentiable at $x=2$, we must have $\lim _{x \rightarrow 2^{-}} g^{\prime}(x)=\lim _{x \rightarrow 2^{+}} g^{\prime}(x)$, which leads to the following:

$$
\begin{aligned}
\frac{9}{8}\left(2^{2}\right) & =(-2)(2)+b \\
\frac{9}{2} & =-4+b \\
b & =\frac{17}{2}
\end{aligned}
$$

In order for g to be differentiable at $x=2, g$ must also be continuous at $x=2$.
$\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{+}} g(x)=g(2)$ leads to the following:

$$
\begin{aligned}
\frac{3}{8}\left(2^{3}\right) & =-\left(2^{2}\right)+\frac{17}{2}(2)+c \\
3 & =-4+17+c \\
c & =-10
\end{aligned}
$$

