1. (20 pts) Parts (a) and (b) are not related.
(a) For $f(x)=\frac{1}{x-1}$ and $g(x)=\sqrt{2-x}$, identify the composite function $(f \circ g)(x)$ and its domain.

Express the domain in interval form.

Solution:

$(f \circ g)(x)=f(g(x))=f(\sqrt{2-x})=\frac{1}{\sqrt{2-x}-1}$
The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.
Domain of $g: \quad 2-x \geq 0 \quad \Rightarrow \quad x \leq 2$
Domain of $f(g(x))$:

$$
\begin{array}{r}
\sqrt{2-x}-1 \neq 0 \\
\sqrt{2-x} \neq 1 \\
2-x \neq 1 \\
x \neq 1
\end{array}
$$

Therefore, the domain of $f \circ g$ is the set of all x such that $x \leq 2$ and $x \neq 1$, which can be written in interval form as $(-\infty, 1) \cup(1,2]$
(b) The graphs below depict the functions $y=p(x)$ and $y=q(x)$, where q is a transformation of p of the form $q(x)=a p(b x)$. Find the values of a and b.

Solution:
The vertical difference between the maximum and minimum values of the curve for $p(x)$ is $3-(-5)=8$, while the vertical difference between the maximum and minimum values of the curve for $q(x)$ is 1.5 -$(-2.5)=4$. Therefore, the curve for $q(x)$ has been constructed by applying a vertical contraction of a factor of 2 to the curve for $p(x)$. This implies that $a=1 / 2$

The horizontal difference between the endpoints of the curve for $p(x)$ is $5-(-3)=8$, while the horizontal difference between the endpoints of the curve for $q(x)$ is $10-(-6)=16$. Therefore, the curve for $q(x)$ has been constructed by applying a horizontal expansion of a factor of 2 to the curve for $p(x)$. This implies that $b=1 / 2$

Note that $q(x)=0.5 p(0.5 x)$.
2. (30 pts) Evaluate the following limits. Support your answers by stating theorems, definitions, or other key properties that are used.
(a) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x^{2}+2 x}$

Solution: Key property: $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x^{2}+2 x} & =\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x(x+2)} \\
& =\lim _{x \rightarrow 0}\left[\frac{\sin (5 x)}{x}\right]\left[\frac{1}{x+2}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{5 \sin (5 x)}{5 x}\right]\left[\frac{1}{x+2}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{\sin (5 x)}{5 x}\right]\left[\frac{5}{x+2}\right] \\
& =\left[\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}\right]\left[\lim _{x \rightarrow 0} \frac{5}{x+2}\right] \\
& =\left[\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}\right]\left[\frac{5}{0+2}\right]
\end{aligned}
$$

Let $\theta=5 x$. It follows that $\theta \rightarrow 0$ as $x \rightarrow 0$.
$\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x^{2}+2 x}=\frac{5}{2} \lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}=\frac{5}{2} \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=\left(\frac{5}{2}\right)(1)=\frac{5}{2}$
(b) $\lim _{x \rightarrow 2} \frac{\sqrt{x+1}-\sqrt{3}}{x^{2}+x-6}$

Solution:

Begin by multiplying the numerator and the denominator by the conjugate of the original numerator expression.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x+1}-\sqrt{3}}{x^{2}+x-6} & =\lim _{x \rightarrow 2} \frac{\sqrt{x+1}-\sqrt{3}}{x^{2}+x-6} \cdot \frac{\sqrt{x+1}+\sqrt{3}}{\sqrt{x+1}+\sqrt{3}} \\
& =\lim _{x \rightarrow 2} \frac{(\sqrt{x+1})^{2}-(\sqrt{3})^{2}}{(x-2)(x+3)(\sqrt{x+1}+\sqrt{3})} \\
& =\lim _{x \rightarrow 2} \frac{(x+1)-3}{(x-2)(x+3)(\sqrt{x+1}+\sqrt{3})} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)}{(x-2)(x+3)(\sqrt{x+1}+\sqrt{3})} \\
& =\lim _{x \rightarrow 2} \frac{1}{(x+3)(\sqrt{x+1}+\sqrt{3})} \\
& =\frac{1}{(2+3)(\sqrt{2+1}+\sqrt{3})}=\frac{1}{(5)(2 \sqrt{3})}=\frac{1}{10 \sqrt{3}}
\end{aligned}
$$

(c) $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{1}{2 x}\right)$

Solution:

$-1 \leq \cos \left(\frac{1}{2 x}\right) \leq 1$
$-x^{4} \leq x^{4} \cos \left(\frac{1}{2 x}\right) \leq x^{4} \quad$ (Since x^{4} is nonnegative for all x, the inequalities do not reverse direction)
$\lim _{x \rightarrow 0}\left(-x^{4}\right)=\lim _{x \rightarrow 0} x^{4}=0$
Therefore, the Squeeze Theorem indicates that $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{1}{2 x}\right)=0$
3. (30 pts) Consider the rational function $r(x)=-\frac{3 x^{2}+21 x+30}{x^{2}+2 x-15}$.
(a) Identify all values of x at which $r(x)$ is discontinuous. At each such x value, explain why the function is discontinuous there.

Solution:

$r(x)=-\frac{3 x^{2}+21 x+30}{x^{2}+2 x-15}=-\frac{3\left(x^{2}+7 x+10\right)}{x^{2}+2 x-15}=-\frac{3(x+2)(x+5)}{(x-3)(x+5)}$
Since $r(x)$ is a rational function, it is continuous at all x in its domain.
Therefore, $r(x)$ is discontinuous only at $x=-5,3$
(b) Identify the type of discontinuity associated with each x value identified in part (a). Support those classifications by evaluating the appropriate limits.

Solution:
$r(x)=-\frac{3(x+2)(x+5)}{(x-3)(x+5)}=-\frac{3(x+2)}{x-3}, x \neq-5,3$
$\lim _{x \rightarrow-5} r(x)=\lim _{x \rightarrow-5}\left[-\frac{3(x+2)}{x-3}\right]=-\frac{3(-5+2)}{-5-3}=-\frac{(3)(-3)}{-8}=-\frac{9}{8}$
Since the two-sided limit is finite, there is a removable discontinuity at $x=-5$
$\lim _{x \rightarrow 3^{-}} r(x)=\lim _{x \rightarrow 3^{-}}\left[-\frac{3(x+2)}{x-3}\right] \rightarrow-\frac{15}{0^{-}}=\infty$
$\lim _{x \rightarrow 3^{+}} r(x)=\lim _{x \rightarrow 3^{+}}\left[-\frac{3(x+2)}{x-3}\right] \rightarrow-\frac{15}{0^{+}}=-\infty$
Since at least one of the two preceding one-sided limits is infinite, there is an infinite discontinuity at $x=3$
(c) Find the equation of each vertical asymptote of $y=r(x)$, if any exist. Support your answer in terms of your work in part (b).

Solution:

The finite value of $\lim _{x \rightarrow-5} r(x)=-\frac{9}{8}$ determined in part (b) indicates that there is no vertical asymptote at $x=-5$.

The infinite limits $\lim _{x \rightarrow 3^{-}} r(x)=\infty$ and $\lim _{x \rightarrow 3^{+}} r(x)=-\infty$ were determined in part (b). Either one of those limits being infinite is sufficient to conclude that the line $x=3$ is a vertical asymptote of the curve $y=r(x)$.
(d) Find the equation of each horizontal asymptote of $y=r(x)$, if any exist. Support your answer by evaluating the appropriate limits. (Reminder: You may not use L'Hôpital's Rule or dominance of powers arguments to evaluate limits on this exam.)

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} r(x) & =\lim _{x \rightarrow \pm \infty}\left[-\frac{3 x^{2}+21 x+30}{x^{2}+2 x-15}\right]=\lim _{x \rightarrow \pm \infty}\left[-\frac{3 x^{2}+21 x+30}{x^{2}+2 x-15}\right] \cdot \frac{1 / x^{2}}{1 / x^{2}} \\
& =\lim _{x \rightarrow \pm \infty}\left[-\frac{3+21 / x+30 / x^{2}}{1+2 / x-15 / x^{2}}\right]=-\frac{3+0+0}{1+0-0}=-3
\end{aligned}
$$

Therefore, the equation of the only horizontal asymptote is $y=-3$
4. (20 pts) Parts (a) and (b) are not related.
(a) For what value of a is the following function $u(x)$ continuous at $x=4$? Support your answer using the definition of continuity, which includes evaluating the appropriate limits.

$$
u(x)=\left\{\begin{array}{lll}
\frac{x-4}{x^{2}-16} & , & x<4 \\
\frac{1}{a-x} & , & x \geq 4
\end{array}\right.
$$

Solution:

By the definition of continuity, $u(x)$ is continuous at $x=4$ if $\lim _{x \rightarrow 4^{-}} u(x)=\lim _{x \rightarrow 4^{+}} u(x)=u(4)$.
$\lim _{x \rightarrow 4^{-}} u(x)=\lim _{x \rightarrow 4^{-}} \frac{x-4}{x^{2}-16}=\lim _{x \rightarrow 4^{-}} \frac{x-4}{(x-4)(x+4)}=\lim _{x \rightarrow 4^{-}} \frac{1}{x+4}=\frac{1}{4+4}=\frac{1}{8}$
$\lim _{x \rightarrow 4^{+}} u(x)=\lim _{x \rightarrow 4^{+}} \frac{1}{a-x}=\frac{1}{a-4}$
$u(4)=\frac{1}{a-4}$

Therefore, $u(x)$ is continuous at $x=4$ if $\frac{1}{8}=\frac{1}{a-4}$, which occurs when $a=12$
(b) Use the Intermediate Value Theorem to establish that the equation $v(x)=x-2 \cos x=0$ has at least one solution on the interval $(0, \pi / 3)$. Verify that all conditions for applying the IVT to this particular problem are satisfied prior to using it.

Solution:

$v(x)$ is continuous for all real numbers x, so $v(x)$ is continuous on the interval $[0, \pi / 3]$.
$v(0)=0-2 \cos (0)=-2$
$v(\pi / 3)=\pi / 3-2 \cos (\pi / 3)=\pi / 3-(2)(1 / 2)=\pi / 3-1$
So, $v(0)<0<v(\pi / 3)$. Note that $\pi / 3>1$ because $\pi>3$.
Therefore, the Intermediate Value Theorem can be applied to establish that there exists a number c in $(0, \pi / 3)$ such that $f(c)=0$. Such a number c is a solution to the original equation.

