1. (30 pts) Determine $\frac{d y}{d x}$ for each of the following.
(a) $y=\frac{\sin x}{2 x+1}$

Solution:
$\frac{d y}{d x}=\frac{(2 x+1) \cdot \frac{d}{d x}[\sin x]-\sin x \cdot \frac{d}{d x}[2 x+1]}{(2 x+1)^{2}}=\frac{(2 x+1) \cos x-2 \sin x}{(2 x+1)^{2}}$
(b) $x^{3}-y^{3}=5 x y$

Solution:

$\frac{d}{d x}\left[x^{3}-y^{3}\right]=\frac{d}{d x}[5 x y]$
$3 x^{2}-3 y^{2} y^{\prime}=5\left(x y^{\prime}+y\right)$
$3 x^{2}-5 y=\left(5 x+3 y^{2}\right) y^{\prime}$
$y^{\prime}=\frac{d y}{d x}=\frac{3 x^{2}-5 y}{5 x+3 y^{2}}$
(c) $y=4 \cos ^{5}(2 x)$

Solution:

$y=4 \cos ^{5}(2 x)=4[\cos (2 x)]^{5}$
$\frac{d y}{d x}=(4)(5)[\cos (2 x)]^{4} \cdot \frac{d}{d x}[\cos (2 x)]=20 \cos ^{4}(2 x)\left[-\sin (2 x) \cdot \frac{d}{d x}[2 x]\right]$
$\frac{d y}{d x}=-40 \cos ^{4}(2 x) \sin (2 x)$
2. (25 pts) The position value of a particle is given by $s(t)=t^{2}-4 t^{1.5}+4 t$, where $t \geq 0$ is in seconds and position is in feet. For each of the following, be sure to include the correct unit of measurement.
(a) Find the particle's velocity function $v(t)$.

Solution:

$$
v(t)=s^{\prime}(t)=\frac{d}{d t}\left[t^{2}-4 t^{1.5}+4 t\right]=2 t-(4)(1.5) t^{0.5}+4=2 t-6 t^{0.5}+4 \mathrm{ft} / \mathrm{s}
$$

(b) Determine the particle's speed at $t=\frac{9}{4}$ seconds.

Solution:

$\left|v\left(\frac{9}{4}\right)\right|=\left|(2)\left(\frac{9}{4}\right)-(6)\left(\frac{9}{4}\right)^{0.5}+4\right|=\left|\frac{9}{2}-(6)\left(\frac{3}{2}\right)+4\right|=\left|\frac{9}{2}-\frac{18}{2}+\frac{8}{2}\right|=\left|-\frac{1}{2}\right|=\frac{1}{2} \mathrm{ft} / \mathrm{s}$
(c) Find the particle's acceleration function $a(t)$.

Solution:

$a(t)=v^{\prime}(t)=\frac{d}{d t}\left[2 t-6 t^{0.5}+4\right]=2-(6)(0.5) t^{-0.5}=2-3 t^{-0.5} \mathrm{ft} / \mathrm{s}^{2}$
(d) Find all values of $t \geq 0$ for which the particle's acceleration is equal to 0 .

Solution:

$2-3 t^{-0.5}=0$
$2=3 t^{-0.5}$
$t^{0.5}=\frac{3}{2}$
$t=\frac{9}{4} \sec$
3. (25 pts) Parts (a) and (b) are unrelated.
(a) Find the equations of the tangent and normal lines to the curve $y=x^{3}-2 x^{2}+x+10$ at $x=-1$.

Solution:

$y(-1)=(-1)^{3}-2(-1)^{2}+(-1)+10=-1-2-1+10=6$
The point of tangency is $(-1,6)$.
$y^{\prime}(x)=3 x^{2}-4 x+1$
$y^{\prime}(-1)=(3)(-1)^{2}-(4)(-1)+1=3+4+1=8$
The slope of the tangent line at $(-1,6)$ is 8 .
The equation of the tangent line is $y-6=8(x-(-1))=y-6=8(x+1)$
The slope of the normal line is $-\frac{1}{\text { slope of tangent line }}=-\frac{1}{8}$.
The equation of the normal line is $y-6=-\frac{1}{8}(x+1)$
(b) Find all values of x on the interval $[0, \pi]$ for which the curve $y=\tan x-4 x$ has a horizontal tangent line.

Solution:

$y^{\prime}(x)=\sec ^{2} x-4=0$
$\sec ^{2} x=4$
$\sec x= \pm 2$
$\cos x= \pm \frac{1}{2}$
The solutions on the interval $[0, \pi]$ are $x=\frac{\pi}{3}, \frac{2 \pi}{3}$
4. (20 pts) Parts (a) and (b) are unrelated.
(a) Determine $f^{\prime}(x)$ for the function $f(x)=\sqrt{x+1}$ by using the definition of derivative. (You must obtain f^{\prime} by evaluating the appropriate limit to earn credit.)

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)+1}-\sqrt{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1}}{h} \cdot \frac{\sqrt{x+h+1}+\sqrt{x+1}}{\sqrt{x+h+1}+\sqrt{x+1}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h+1)-(x+1)}{h(\sqrt{x+h+1}+\sqrt{x+1})}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+1}+\sqrt{x+1})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+1}+\sqrt{x+1}}=\frac{1}{\sqrt{x+0+1}+\sqrt{x+1}}=\frac{1}{2 \sqrt{x+1}}
\end{aligned}
$$

(b) $\lim _{x \rightarrow 1} \frac{x^{8}+2 x^{5}-3}{x-1}$ represents the derivative of a certain function f at a certain number a.
i. Identify f and a.

Solution:

The definition of a derivative states that $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
Since the given expression represents $f^{\prime}(a)$ for some f and a, we have
$f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow 1} \frac{x^{8}+2 x^{5}-3}{x-1}$
Based on the structure of the terms in the preceding equation, we can hypothesize that $a=1$ and $f(x)=x^{8}+2 x^{5}$, in which case $f(a)$ would have to equal 3 .

For $a=1$ and $f(x)=x^{8}+2 x^{5}$, we have $f(1)=1^{8}+(2)\left(1^{5}\right)=3$, which confirms our hypothesis.
Therefore, $f(x)=x^{8}+2 x^{5}$ and $a=1$.
ii. Use $f^{\prime}(a)$ to evaluate the given limit.

Solution:

Based on the work in part (i), $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow 1} \frac{x^{8}+2 x^{5}-3}{x-1}=f^{\prime}(1)$.
$f^{\prime}(x)=8 x^{7}+10 x^{4} \Rightarrow f^{\prime}(1)=(8)\left(1^{7}\right)+(10)\left(1^{4}\right)=18 \Rightarrow \lim _{x \rightarrow 1} \frac{x^{8}+2 x^{5}-3}{x-1}=18$

