1. (20 pts) Parts (a) and (b) are not related.
(a) For $f(x)=\frac{1}{x^{2}}$ and $g(x)=\frac{1}{\sqrt{x+2}}$, identify the composite function $(f \circ g)(x)$ and its domain. Express the domain in interval form.

Solution:

$(f \circ g)(x)=f(g(x))=f\left(\frac{1}{\sqrt{x+2}}\right)=\left(\frac{1}{\sqrt{x+2}}\right)^{-2}=(\sqrt{x+2})^{2}=x+2$
The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.
Domain of $g: \quad x+2>0 \quad \Rightarrow \quad x>-2$
For each x in the interval $(-2, \infty), g(x)$ is in the domain of f (since $g(x) \neq 0$ for all x values).
Therefore, the domain of $f \circ g$ is $(-2, \infty)$
(b) The graph below depicts a function of the form $y=h(x)=a \sin (b x)+c$. Determine the values of a, b, and c. (Hint: Consider the transformations from the graph of $y=\sin x$ to the given graph.)

Solution:

Begin with the graph of the relevant base curve, $y=\sin x$:

The profile of the given curve over the interval $[0, \pi]$ is the same as the profile of the $y=\sin x$ curve over the interval $[0,3 \pi]$. Therefore, the given curve has experienced a horizontal compression of a factor of 3 with respect to the $y=\sin x$ curve, which implies that $b=3$

The vertical difference between the given curve's maximum and minimum values is $1-(-3)=4$, while the vertical difference between the $y=\sin x$ curve's maximum and minimum values is $1-(-1)=2$. Therefore, the given curve has experienced a vertical expansion of a factor of 2 with respect to the $y=\sin x$ curve, which implies that $a=2$

The vertical center of the given curve is $y=-1$ while the vertical center of the $y=\sin x$ curve is $y=0$. Therefore, the given curve has experienced a downward vertical shift of 1 unit with respect to the $y=\sin x$ curve, which implies that $c=-1$

Therefore, the function depicted in the given graph is $y=2 \sin (3 x)-1$
2. (30 pts) Evaluate the following limits. Support your answers by stating theorems, definitions, or other key properties that are used.
(a) $\lim _{x \rightarrow 0} \frac{\tan x \sin (2 x)}{x^{2}}$

Solution: Key property: $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan x \sin (2 x)}{x^{2}} & =\lim _{x \rightarrow 0}\left[\frac{\tan x}{x}\right]\left[\frac{\sin (2 x)}{x}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{\sin x}{x \cos x}\right]\left[\frac{2 \sin (2 x)}{2 x}\right] \\
& =\lim _{x \rightarrow 0}\left[\left(\frac{\sin x}{x}\right)\left(\frac{1}{\cos x}\right)\right]\left[\frac{2 \sin (2 x)}{2 x}\right] \\
& =\left[\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)\right]\left[\lim _{x \rightarrow 0}\left(\frac{2}{\cos x}\right)\right]\left[\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}\right] \\
& =[1]\left[\frac{2}{1}\right]\left[\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}\right]=2 \lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}
\end{aligned}
$$

Let $\theta=2 x$. It follows that $\theta \rightarrow 0$ as $x \rightarrow 0$.
$\lim _{x \rightarrow 0} \frac{\tan x \sin (2 x)}{x^{2}}=2 \lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}=2 \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=(2)(1)=2$
(b) $\lim _{x \rightarrow 9} \frac{\sqrt{x-5}-2}{x-9}$

Solution:

Begin by multiplying the numerator and the denominator by the conjugate of the original numerator expression.

$$
\begin{aligned}
\lim _{x \rightarrow 9} \frac{\sqrt{x-5}-2}{x-9} & =\lim _{x \rightarrow 9} \frac{\sqrt{x-5}-2}{x-9} \cdot \frac{\sqrt{x-5}+2}{\sqrt{x-5}+2} \\
& =\lim _{x \rightarrow 9} \frac{(\sqrt{x-5})^{2}-2^{2}}{(x-9)(\sqrt{x-5}+2)} \\
& =\lim _{x \rightarrow 9} \frac{(x-5)-4}{(x-9)(\sqrt{x-5}+2)} \\
& =\lim _{x \rightarrow 9} \frac{(x-9)}{(x-9)(\sqrt{x-5}+2)} \\
& =\lim _{x \rightarrow 9} \frac{1}{(\sqrt{x-5}+2)}=\frac{1}{(\sqrt{9-5}+2)}=\frac{1}{4}
\end{aligned}
$$

(c) $\lim _{x \rightarrow 0} x^{8} \sin \left(\frac{1}{x^{3}}\right)$

Solution:

$-1 \leq \sin \left(\frac{1}{x^{3}}\right) \leq 1$
$-x^{8} \leq x^{8} \sin \left(\frac{1}{x^{3}}\right) \leq x^{8} \quad$ (Since x^{8} is nonnegative for all x, the inequalities do not reverse direction)
$\lim _{x \rightarrow 0}\left(-x^{8}\right)=\lim _{x \rightarrow 0} x^{8}=0$
Therefore, the Squeeze Theorem indicates that $\lim _{x \rightarrow 0} x^{8} \sin \left(\frac{1}{x^{3}}\right)=0$
3. (30 pts) Consider the rational function $r(x)=\frac{x^{2}-5 x+4}{2 x^{2}-8 x+6}$.
(a) Identify all values of x at which $r(x)$ is discontinuous. At each such x value, explain why the function is discontinuous there.

Solution:

$r(x)=\frac{x^{2}-5 x+4}{2 x^{2}-8 x+6}=\frac{(x-1)(x-4)}{2(x-1)(x-3)}$
Since $r(x)$ is a rational function, it is continuous at all x in its domain.
Therefore, $r(x)$ is discontinuous only at $x=1,3$
(b) Identify the type of discontinuity associated with each x value identified in part (a). Support those classifications by evaluating the appropriate limits.

Solution:
$r(x)=\frac{(x-1)(x-4)}{2(x-1)(x-3)}=\frac{(x-4)}{2(x-3)}, \quad x \neq 1,3$
$\lim _{x \rightarrow 1} r(x)=\lim _{x \rightarrow 1} \frac{x-4}{2(x-3)}=\frac{1-4}{(2)(1-3)}=\frac{-3}{-4}=\frac{3}{4}$
Since the two-sided limit is finite, there is a removable discontinuity at $x=1$
$\lim _{x \rightarrow 3^{-}} r(x)=\lim _{x \rightarrow 3^{-}} \frac{x-4}{2(x-3)} \rightarrow \frac{-1}{(2)\left(0^{-}\right)}=\infty$
$\lim _{x \rightarrow 3^{+}} r(x)=\lim _{x \rightarrow 3^{+}} \frac{x-4}{2(x-3)} \rightarrow \frac{-1}{(2)\left(0^{+}\right)}=-\infty$
Since at least one of the two preceding one-sided limits is infinite, there is an infinite discontinuity at $x=3$
(c) Find the equation of each vertical asymptote of $y=r(x)$, if any exist. Support your answer in terms of the limits you evaluated in part (b).

Solution:

The finite value of $\lim _{x \rightarrow 1} r(x)=\frac{3}{4}$ determined in part (b) indicates that there is no vertical asymptote at $x=1$.

The infinite limits $\lim _{x \rightarrow 3^{-}} r(x)=\infty$ and $\lim _{x \rightarrow 3^{+}} r(x)=-\infty$ were determined in part (b). Either one of those limits being infinite is sufficient to conclude that the line $x=3$ is a vertical asymptote of the curve $y=r(x)$.
(d) Find the equation of each horizontal asymptote of $y=r(x)$, if any exist. Support your answer by evaluating the appropriate limits.

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} r(x) & =\lim _{x \rightarrow \pm \infty} \frac{x^{2}-5 x+4}{2 x^{2}-8 x+6}=\lim _{x \rightarrow \pm \infty} \frac{x^{2}-5 x+4}{2 x^{2}-8 x+6} \cdot \frac{1 / x^{2}}{1 / x^{2}} \\
& =\lim _{x \rightarrow \pm \infty} \frac{1-5 / x+4 / x^{2}}{2-8 / x+6 / x^{2}}=\frac{1-0+0}{2-0+0}=\frac{1}{2}
\end{aligned}
$$

Therefore, the equation of the only horizontal asymptote is $y=\frac{1}{2}$
4. (20 pts) Parts (a) and (b) are not related.
(a) For what value of b is the following function $u(x)$ continuous at $x=3$? Support your answer using the definition of continuity, which includes evaluating the appropriate limits.

$$
u(x)= \begin{cases}\frac{x^{2}-9}{x-3} & , \quad x<3 \\ 5 x+b & , \quad x \geq 3\end{cases}
$$

Solution:

By the definition of continuity, $u(x)$ is continuous at $x=3$ if $\lim _{x \rightarrow 3^{-}} u(x)=\lim _{x \rightarrow 3^{+}} u(x)=u(3)$.
$\lim _{x \rightarrow 3^{-}} u(x)=\lim _{x \rightarrow 3^{-}} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3^{-}}(x+3)=3+3=6$
$\lim _{x \rightarrow 3^{+}} u(x)=\lim _{x \rightarrow 3^{+}}(5 x+b)=(5)(3)+b=15+b$
$u(3)=(5)(3)+b=15+b$

Therefore, $u(x)$ is continuous at $x=3$ if $6=15+b$, which occurs when $b=-9$
(b) The Intermediate Value Theorem can NOT be used to guarantee that $v(x)=\frac{2}{x}+\sqrt{x+2}=0$ for a value of x on the interval $(-1,2)$. Explain which condition for applying the theorem is not satisfied in this case.

Solution:

The Intermediate Value Theorem cannot be applied in this case because $v(0)$ is undefined, which means that $v(x)$ is not continuous on the interval $[-1,2]$

The continuity of $v(x)$ on $[-1,2]$ is one of the hypotheses for applying the IVT to the given function on the given interval.
(Note that $v(-1)=-1$ and $v(2)=3$ together indicate that the other IVT hypothesis does hold)

