1. (28 pts) The following problems are not related.
(a) Express the following as a polynomial: $(\sqrt{x-3}+2)(\sqrt{x-3}-2)$

Solution: Using the FOIL method produces a difference of squares.

$$
(\sqrt{x-3}+2)(\sqrt{x-3}-2)=(\sqrt{x-3})^{2}-2^{2}=(x-3)-4=x-7
$$

(b) Fully simplify: $\sqrt{a^{2} b^{7}}$

Solution:

$\sqrt{a^{2} b^{7}}=\sqrt{a^{2}} \sqrt{b^{7}}=|a| b^{3} \sqrt{b}$
(c) Fully simplify: $\frac{\frac{1}{x+h}-\frac{1}{x}}{h}$

Solution:

$$
\frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\frac{1}{h}\left[\frac{1}{x+h}-\frac{1}{x}\right]=\frac{1}{h}\left[\frac{x-(x+h)}{x(x+h)}\right]=\frac{-h}{h x(x+h)}=-\frac{1}{x(x+h)}
$$

(d) Solve: $x^{7 / 3}-15 x^{1 / 3}=2 x^{4 / 3}$

Solution:

$x^{7 / 3}-15 x^{1 / 3}=2 x^{4 / 3} \quad \Rightarrow \quad x^{7 / 3}-2 x^{4 / 3}-15 x^{1 / 3}=0 \quad \Rightarrow \quad x^{1 / 3}\left(x^{2}-2 x-15\right)=0$
The Zero Factor Theorem indicates that $x^{1 / 3}=0$ or $x^{2}-2 x-15=0$.
$x^{1 / 3}=0 \quad \Rightarrow \quad x=0$
$x^{2}-2 x-15=(x-5)(x+3)=0 \quad \Rightarrow \quad x=-3,5$
$x=-3,0,5$
2. (22 pts) For the following, let point A be $(2,1)$ and let point B be $(-6,7)$:
(a) Find the distance between points A and B.

Solution: Apply the distance formula.
$D=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-6-2)^{2}+(7-1)^{2}}=\sqrt{(-8)^{2}+6^{2}}$
$D=\sqrt{100}=10$
(b) Find a point-slope equation of the line passing through points A and B.

Solution:

The point-slope form of the equation of the line passing through a point $\left(x_{1}, y_{1}\right)$ is $y-y_{1}=m\left(x-x_{1}\right)$. Since the line of interest passes through points \mathbf{A} and \mathbf{B}, the coordinates of either point can be used as $\left(x_{1}, y_{1}\right)$.

The parameter m, which represents the slope of the line, is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
It does not matter which point is selected to be $\left(x_{1}, y_{1}\right)$ and which is selected to be $\left(x_{2}, y_{2}\right)$. The two possibilities produce the same slope value:
$m=\frac{7-1}{-6-2}=\frac{1-7}{2-(-6)}=-\frac{3}{4}$
Similarly, it does not matter which point is selected to be $\left(x_{1}, y_{1}\right)$ in the equation of the line:
Using point $\mathrm{A}: \quad x_{1}=2, \quad y_{1}=1: \quad y-1=-\frac{3}{4}(x-2)$
Using point $\mathrm{B}: \quad x_{1}=-6, y_{1}=7: \quad y-7=-\frac{3}{4}(x-(-6)) \quad \Rightarrow \quad y-7=-\frac{3}{4}(x+6)$
Both of the preceding results are valid point-slope representations of the line passing through points A and B.
(c) Find the midpoint of the line segment connecting points A and B.

Solution:

The general expression for the midpoint of the line segment connecting the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Substituting the coordinate values of points A and B leads to the following midpoint of the connecting line segment:
$\left(\frac{2-6}{2}, \frac{1+7}{2}\right)=(-2,4)$
(d) Find the equation of the line that is perpendicular to the line in part (b) and passes through the origin.

Solution:

The slopes of two perpendicular lines are negative reciprocals of each other. Since the slope of the line through points A and B is $-3 / 4$, the slope of a line that is perpendicular to the original line is $4 / 3$.

Since the new line is said to pass through the origin, the point-slope form and the slope-intercept form of that line will be the same:

Point-slope form: $\quad y-0=\frac{4}{3}(x-0)$
Slope-intercept form: $\quad y=\frac{4}{3} x+0$
Therefore, the equation of the perpendicular line is $y=\frac{4}{3} x$
3. (22 pts) The following problems are not related.
(a) If θ is on the interval $\left[\frac{\pi}{2}, \pi\right]$ and $\tan \theta=-\frac{5}{2}$, find the value of $\csc \theta$.

Solution:

$\tan \theta=-\frac{5}{2}$ and $\frac{\pi}{2} \leq \theta \leq \pi$ together imply the following orientation of $\theta:$

The hypotentuse in the preceding figure was determined from the Pythagorean Theorem:
$\sqrt{(-2)^{2}+5^{2}}=\sqrt{29}$.
It follows from the figure that $\csc \theta=\frac{\sqrt{29}}{5}$
(b) Evaluate $\cos \left(\frac{3 \pi}{4}\right)$.

Solution:

Since $\frac{\pi}{2}<\frac{3 \pi}{4}<\pi$, the angle $\frac{3 \pi}{4}$ lies in Quadrant II, as drawn in the following figure.

The reference angle is $\pi-\frac{3 \pi}{4}=\frac{\pi}{4}$, which is a 45° angle in the special $45^{\circ}-45^{\circ}-90^{\circ}$ right triangle. The dimensions of such a triangle are proportional to 1,1 , and $\sqrt{2}$, which leads to the set of dimensions displayed in the figure.
It follows from the figure that $\cos \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$
(c) The height of a building is known to be 555 feet. A person standing a certain distance away measures the angle from their feet to the top of the building to be 60°. How far away is the person from the building? Express your answer in exact form and include the proper unit of measurement.

Solution:

The situation is depicted in the following figure:

The triangle in the preceding figure is the special $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle, which is depicted below:

Since the two triangles depicted above are similar triangles, the following proportion of side lengths applies, which is also equal to $\tan 60^{\circ}$:
$\tan 60^{\circ}=\frac{555}{d}=\sqrt{3}$

Solving for d and applying the appropriate measurement unit of feet results in $d=\frac{555}{\sqrt{3}} \mathrm{ft}$
4. (28 pts) The following problems are not related.
(a) Find all values of x in the interval $[0,2 \pi]$ that satisfy the equation $\sin (2 x)=\cos x$.

Solution:

The double-angle formula $\sin 2 x=2 \sin x \cos x$ can be substituted for the left-hand expression in the given equation:
$2 \sin x \cos x=\cos x \quad \Rightarrow \quad 2 \sin x \cos x-\cos x=0 \quad \Rightarrow \quad \cos x(2 \sin x-1)=0$

The Zero Factor Theorem indicates that $\cos x=0$ or $2 \sin x-1=0$.
$\cos x=0 \quad \Rightarrow \quad x=\frac{\pi}{2}, \frac{3 \pi}{2}$
$2 \sin x-1=0 \quad \Rightarrow \quad \sin x=\frac{1}{2}$
The following figure can assist in evaluating $\sin x=\frac{1}{2}$:

Both triangles in the preceding figure are associated with an angle whose sine is $1 / 2$. The leg of length 1 and the hypotenuse of length 2 together imply that both triangles are special $30^{\circ}-60^{\circ}-90^{\circ}$ right triangles. In such a triangle, the angle opposite the leg of length 1 is 30°, which is $\pi / 6$ radians. Therefore, the two solutions to the equation $\sin x=1 / 2$ are:
$x=\frac{\pi}{6}, \pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
$x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
(b) What is the radius of a circular sector having a central angle of 40° and an area of 4π ?

Solution:

The formula for the area of a circular sector is $A=\frac{1}{2} \theta r^{2}$.
In this problem, the central angle θ is 40°, which is $\left(40^{\circ}\right)\left(\frac{\pi \mathrm{rad}}{180^{\circ}}\right)=\frac{2 \pi}{9}$ radians.
Substituting $\theta=\frac{2 \pi}{9}$ and $A=4 \pi$ into the equation for area yields:
$4 \pi=\frac{1}{2} \cdot \frac{2 \pi}{9} \cdot r^{2} \quad \Rightarrow \quad r^{2}=36 \quad \Rightarrow \quad r=6$
(c) Is the function $f(x)=x^{7}+3 x^{3}-1$ odd, even, or neither? Justify your answer by using the definition of odd and/or even functions.

Solution:

$f(-x)=(-x)^{7}+(3)(-x)^{3}-1=-x^{7}-3 x^{3}-1$
$f(-x)=-x^{7}-3 x^{3}-1 \neq f(x) \quad \Rightarrow \quad \mathrm{f}$ is not an even function
$f(-x)=-x^{7}-3 x^{3}-1 \neq-f(x) \quad \Rightarrow \quad \mathrm{f}$ is not an odd function

Therefore, f is neither even nor odd

