1. $(24 \mathrm{pts})$ The following problems are not related. Show all work.
(a)(12pts) Use the Quotient Rule to find $f^{\prime}(x)$ if $f(x)=\frac{x^{2}-2}{2 x+1}$. Simplify your answer.
(b) (12pts) If $y=\sin (\cot (x))$ find $d y / d x$. Simplify your answer.

Solution:

(a)(12pts) By the Quotient Rule, we have

$$
\left[\frac{x^{2}-2}{2 x+1}\right]^{\prime}=\frac{2 x \cdot(2 x+1)-\left(x^{2}-2\right) \cdot 2}{(2 x+1)^{2}}=\frac{4 x^{2}+2 x-2 x^{2}+4}{(2 x+1)^{2}}=\frac{2 x^{2}+2 x+4}{(2 x+1)^{2}}
$$

(b)(12pts) By the Chain Rule, we have

$$
\frac{d}{d x}[\sin (\cot (x))]=\cos (\cot (x)) \cdot-\csc ^{2}(x)=-\cos (\cot (x)) \csc ^{2}(x)
$$

2. (28pts) Start this problem on a new page. The following problems are not related.
(a)(12pts) Suppose y is a function of x, use implicit differentiation to find y^{\prime} if $y \cos (x)=x^{2}+y^{2}$.
(b)(12pts) Find the equation of the tangent line to $y=\sqrt{x}$ at the point $(1,1)$. Simplify your answer.
(c) (4pts) Which of the choices below is equivalent to the limit $\lim _{x \rightarrow 1} \frac{x^{4}+x-2}{x-1}$? Choose only one answer. No justification necessary, copy down the entire answer. If you do not copy down the entire answer, points will be deducted.
(A) $4 x^{3}-1$
(B) 5
(C) $\frac{0}{0}$
(D) 3
(E) None of these

Solution:

(a)(12pts) Differentiating both sides of the equation with respect to x yields

$$
y \cos (x)=x^{2}+y^{2} \stackrel{d / d x}{\Rightarrow} y^{\prime} \cos (x)-y \sin (x)=2 x+2 y y^{\prime} \Rightarrow y^{\prime} \cos (x)-2 y y^{\prime}=2 x+y \sin (x) \Rightarrow y^{\prime}=\frac{2 x+y \sin (x)}{\cos (x)-2 y}
$$

(b) (12pts) Note that $f(x)=\sqrt{x} \Rightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \Rightarrow f^{\prime}(1)=\frac{1}{2}$ thus

$$
y=f(1)+f^{\prime}(1)(x-1) \Rightarrow y=1+\frac{1}{2}(x-1) \Rightarrow y=\frac{x}{2}+\frac{1}{2}
$$

(c)(4pts) Choice B. Note that if we let $f(x)=x^{4}+x$ then, using the limit definition of the derivative, we have

$$
\lim _{x \rightarrow 1} \frac{x^{4}+x-2}{x-1}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=f^{\prime}(1)=\left.\left(4 x^{3}+1\right)\right|_{x=1}=5 \Rightarrow \text { Choice }(\mathrm{B})
$$

3. (20pts) Start this problem on a new page. The following problems are not related.
(a)(10pts) For what value(s) of $x \in \mathbb{R}$ does the function $f(x)=2 x^{3}+3 x^{2}-12 x+1$ have a horizontal tangent?
(b) (10pts) The position function of a particle is given by $s(t)=t^{3}-4.5 t^{2}-7 t$ where $t \geq 0$ is in seconds and distance is in feet. $(i)(5 \mathrm{pts})$ Find the velocity of the particle as a function of t. (ii) (5pts) When is the acceleration equal to 0 ?

Solution:

(a)(10pts) We need to find all x in the domain such that $f^{\prime}(x)=0$, note that

$$
f^{\prime}(x)=\left[2 x^{3}+3 x^{2}-12 x+1\right]^{\prime}=6 x^{2}+6 x-12=6\left(x^{2}+x-2\right)=6(x+2)(x-1)
$$

thus $f^{\prime}(x)=0 \Rightarrow x=-2,1$ which is in the domain since $f(x)$ is a polynomial thus $f(x)$ has horizontal tangents at $x=-2,1$.
(b) $(i)(5 \mathrm{pts})$ Here we have the velocity is $v(t)=s^{\prime}(t)=\left[t^{3}-4.5 t^{2}-7 t\right]^{\prime}=3 t^{2}-9 t-7$.
(b) $(i i)(5 \mathrm{pts})$ The acceleration is $a(t)=v^{\prime}(t)=\left[3 t^{2}-9 t-7\right]^{\prime}=6 t-9$ thus $a(t)=0 \Rightarrow 6 t-9=0 \Rightarrow t=\frac{9}{6} \mathrm{sec}$.
4. (28pts) Start this problem on a new page. The following problems are not related.
(a)(12pts) If $y=\sec (x)$, find $y^{\prime \prime}$. Show all work.
(b)(12pts) For what values of a and b will the function $f(x)=\left\{\begin{array}{ll}x^{2}-3 x, & \text { if } x<2 \\ a x^{2}+b, & \text { if } x \geq 2\end{array}\right.$ be differentiable at $x=2$? Explain.
(c) (4pts) If $h(x)=\sqrt{4+3 f(x)}$ where $f(1)=7$ and $f^{\prime}(1)=4$, then $h^{\prime}(1)$ is equal to which choice below? Choose only one answer. No justification necessary, copy down the entire answer. If you do not copy down the entire answer, points will be deducted.
(A) 5
(B) $\frac{25}{2}$
(C) 10
(D) $\frac{6}{5}$
(E) None of these

Solution:

(a) (12pts) Note that

$$
\begin{aligned}
& y^{\prime}= \\
\Rightarrow & {[\sec (x)]^{\prime}=\sec (x) \tan (x) } \\
y^{\prime \prime} & =[\sec (x) \tan (x)]^{\prime}=\sec (x) \tan (x) \cdot \tan (x)+\sec (x) \cdot \sec ^{2}(x) \Rightarrow y^{\prime \prime}=\sec (x)\left[\tan ^{2}(x)+\sec ^{2}(x)\right]
\end{aligned}
$$

(b) (12pts) Since differentiability implies continuity, we first need $f(x)$ to be continuous at $x=2$, that is, we need

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \Rightarrow-2=4 a+b \Rightarrow b=-(2+4 a)
$$

and we need the derivative to exist at $x=2$. For differentiability at $x=2$, we need

$$
\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2} \Leftrightarrow 2 x-\left.3\right|_{x=2}=\left.2 a x\right|_{x=2} \Rightarrow 1=4 a \Rightarrow a=\frac{1}{4} \Rightarrow b=-(2+4 a)=-3
$$

(c) $(4 \mathrm{pts})$ Choice D. Note that

$$
\begin{aligned}
h^{\prime}(x) & =[\sqrt{4+3 f(x)}]^{\prime}=\frac{1}{2}(4+3 f(x))^{-1 / 2} \cdot 3 f^{\prime}(x) \\
\Rightarrow h^{\prime}(1) & =\frac{1}{2}(4+3 f(1))^{-1 / 2} \cdot 3 f^{\prime}(1)=\frac{1}{2}(4+3 \cdot 7)^{-1 / 2} \cdot 3 \cdot 4=\frac{12}{2 \sqrt{25}}=\frac{6}{5} \Rightarrow \text { Choice (D) }
\end{aligned}
$$

