Solution: APPM 1340 Exam 2 (Solutions) Fall 2019

1. (28pts) The following problems are not related.
 (a)(12pts) Suppose \(f(x) = \sin(x) \), with domain \(0 \leq x \leq 4\pi \) and \(g(x) = x^{1/2} \). Find \((g \circ f)(x)\) and also state the domain in interval notation. Justify your answer.

 (b)(12pts) Suppose that \(h(x) = \begin{cases} \frac{|x - 3|}{x^2 - 9} & \text{if } x < 3 \\ \sqrt[3]{3x - 5} & \text{if } x > 3 \end{cases} \), find the two-sided limit \(\lim_{x \to 3} h(x) \). Show all work and justify your answer.

 (c)(4pts) The function \(f(x) = \frac{3x + 1}{\sqrt{4x^2 + 5}} \) has a horizontal asymptote at which choice below? (No justification necessary - Choose only one answer, copy down the entire answer.)

 (A) \(y = 0 \) \hspace{1cm} (B) \(y = \frac{3}{2} \) \hspace{1cm} (C) \(y = 0 \) and \(y = \frac{3}{2} \) \hspace{1cm} (D) \(y = -\frac{3}{2} \) and \(y = 1.5 \) \hspace{1cm} (E) None of these

 Solution: (a)(12pts) Note that
 \[
 (g \circ f)(x) = g(f(x)) = g(\sin(x)) = \sqrt{\sin(x)} \quad \text{with domain } [0, \pi] \cup [2\pi, 3\pi] \cup [4\pi, 4\pi].
 \]

 so \((g \circ f)(x) = \sqrt{\sin(x)} \), with domain \([0, \pi] \cup [2\pi, 3\pi] \cup [4\pi, 4\pi]\).

 (b)(12pts) We need to examine the 1-sided limits:
 \[
 \lim_{x \to 3^-} h(x) = \lim_{x \to 3^-} \frac{|x - 3|}{x^2 - 9} = \lim_{x \to 3^-} \frac{(x - 3)}{x^2 - 9} = \lim_{x \to 3^-} \frac{-(x - 3)}{(x - 3)(x + 3)} = \lim_{x \to 3^-} \frac{-1}{x + 3} = -1/6
 \]

 and
 \[
 \lim_{x \to 3^+} h(x) = \lim_{x \to 3^+} \frac{\sqrt{3x - 5}}{12} = \frac{\sqrt{9} - 5}{12} = \frac{-2}{12} = -\frac{1}{6}
 \]

 thus \(\lim_{x \to 3} h(x) = -1/6 \).

 (c)(4pts) Choice D. Note that
 \[
 \lim_{x \to \infty} \frac{3x + 1}{\sqrt{4x^2 + 5}} = \lim_{x \to \infty} \frac{x(3 + 1/x)}{2|x| \sqrt{1 + 5/4x^2}} = \lim_{x \to \infty} \frac{x(3 + 1/x)}{2x \sqrt{1 + 5/4x^2}} = \lim_{x \to \infty} \frac{x(3 + 1/x)}{2x \sqrt{1 + 5/4x^2}} = \frac{3}{2} = 1.5
 \]

 thus \(y = 1.5 \) is a horizontal asymptote of \(f(x) \) and, similarly,
 \[
 \lim_{x \to -\infty} \frac{3x + 1}{\sqrt{4x^2 + 5}} = \lim_{x \to -\infty} \frac{x(3 + 1/x)}{2|x| \sqrt{1 + 5/4x^2}} = \lim_{x \to -\infty} \frac{x(3 + 1/x)}{2x \sqrt{1 + 5/4x^2}} = \lim_{x \to -\infty} \frac{x(3 + 1/x)}{2x \sqrt{1 + 5/4x^2}} = \frac{3}{2} = -3/2
 \]

 thus \(y = -3/2 \) is also a horizontal asymptote of \(f(x) \).

2. (24pts) The following problems are not related.

 (a)(12pts) Use the Squeeze Theorem to evaluate the following limit: \(\lim_{x \to 1} (x - 1)^2 \cos \left(\frac{1}{x - 1} \right) \). Show all work, explain your answer.

 (b)(12pts) Find the limit \(\lim_{x \to 0} \frac{\sin(\pi x)}{\sin(5x)} \). Justify your answer, show all work.
3. (28pts) The following problems are not related.

(a) (12pts) Evaluate the limit: \(\lim_{x \to 4} \frac{\sqrt{6x + 1} - 5}{x - 4} \). Show all work.

(b) (12pts) Suppose \(f(x) = \begin{cases} x^2 + x, & \text{if } x \neq 0 \\ \cos(x), & \text{if } x = 0 \end{cases} \). (i) (6pts) Find the \(\lim_{x \to 0} f(x) \). (ii) (6pts) Is \(f(x) \) continuous for all real \(x \)? If not, classify the discontinuities of \(f(x) \). Use limits to answer this question. Explain.

(c) (4pts) Which choice below would result in shifting the graph of \(y = s(t) \) one unit to the right and then reflecting it about the \(y \)-axis? (No justification necessary - Choose only one answer, copy down the entire answer.)

(A) \(y = -s(t) - 1 \) \hspace{2em} (B) \(y = s(-(t + 1)) \) \hspace{2em} (C) \(y = s(-(t - 1)) \) \hspace{2em} (D) \(y = -s(t + 1) \) \hspace{2em} (E) \(y = s(-t) - 1 \)

Solution: (a) (12pts) Multiplying by the conjugate yields:

\[
\lim_{x \to 4} \frac{\sqrt{6x + 1} - 5}{x - 4} = \lim_{x \to 4} \frac{\sqrt{6x + 1} - 5}{x - 4} \cdot \frac{\sqrt{6x + 1} + 5}{\sqrt{6x + 1} + 5} = \lim_{x \to 4} \frac{(6x + 1) - 25}{(x - 4)(\sqrt{6x + 1} + 5)} = \lim_{x \to 4} \frac{6(x - 4)}{(x - 4)(\sqrt{6x + 1} + 5)} = \frac{6}{10} = \frac{3}{5}.
\]

(b)(i) (6pts) Note that

\[
\lim_{x \to 0} f(x) = \lim_{x \to 0^+} x^2 + x = 0 \quad \text{and} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 + x = 0 \quad \text{thus} \quad \lim_{x \to 0} f(x) = 0
\]

(b)(ii) (6pts) No, \(f(x) \) is not continuous at \(x = 0 \). For \(x \neq 0 \), we have \(f(x) = x^2 + x \), and recall that polynomial are continuous and at \(x = 0 \) we have to check that \(\lim_{x \to 0} f(x) = f(0) \), note that

\[
\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 + x = 0^2 + 0 = 0 \quad \text{and} \quad f(0) = \cos(0) = 1 \Rightarrow \lim_{x \to 0} f(x) \neq f(0)
\]

and so \(f(x) \) is not continuous for all real \(x \) and has a removable discontinuity at \(x = 0 \).

(c)(4pts) Choice B. Note that shifting the graph of \(y = s(t) \) one unit to the right and then reflecting the graph about the \(y \)-axis is the same as reflecting the graph of \(s(t) \) about the \(y \)-axis, i.e. \(s(-t) \), and then shifting the graph one unit to the left, thus we have \(s(-(t + 1)) \). (Note Choice C is incorrect since the transformation \(y = s(-(t - 1)) \) shifts the graph on unit to the right and then reflects the graph about the vertical line \(t = 1 \) not the \(y \)-axis.)
4. (20pts) The following problems are not related.

(a) (12pts) Let \(q(t) = \begin{cases} \frac{kt^2 + 2}{t^2 - 9}, & \text{if } t \leq 3 \\ \frac{t^2 - 9}{t - 3}, & \text{if } t > 3 \end{cases} \). Find the value of \(k \) that makes \(q(t) \) continuous at \(t = 3 \). Justify.

(b) (8pts) Suppose the function \(y = g(x) \) has horizontal asymptote \(y = 3 \) and vertical asymptote \(x = -1 \), find all horizontal and vertical asymptotes of the function \(h(t) = -g(t - 2)/3 \). Justify your answer.

Solution:

(a) (12pts) We check the one-sided limits, thus

\[
q(3) = \lim_{t \to 3^-} q(t) = \lim_{t \to 3^-} \frac{kt^2 + 2}{t^2 - 9} = \frac{9k + 2}{6} \quad \text{and} \quad \lim_{t \to 3^+} q(t) = \lim_{t \to 3^+} \frac{t^2 - 9}{t - 3} = 6
\]

and letting \(9k + 2 = 6 \) we see that \(k = 4/9 \) and so we see that \(q(t) \) will be continuous at \(t = 3 \) if \(k = 4/9 \).

(b) (8pts) Note that we can assume that \(\lim_{x \to \infty} g(x) = 3 \) and \(\lim_{x \to -\infty} g(x) = 3 \) and so

\[
\lim_{t \to \infty} h(t) = \lim_{t \to \infty} -g(t - 2)/3 = -\frac{1}{3} \lim_{t \to \infty} g(t - 2) = -\frac{1}{3} \cdot 3 = -1
\]

and, similarly, \(\lim_{t \to -\infty} h(t) = -1 \) and so \(y = -1 \) is a horizontal asymptote of \(h(t) \). Now note that the graph of \(h(t) = -g(t - 2)/3 \) is the graph of \(g(t) \) reflected about the \(t \)-axis, re-scaled and shifted to the right 2 units. Thus \(h(t) \) has a vertical asymptote at \(t = -1 + 2 = 1 \). So \(h(t) \) has a horizontal asymptote at \(y = -1 \) and a vertical asymptote at \(t = 1 \).