1. The following are unrelated: (15 pts)
(a) Rewrite each of the following without the absolute value symbol:
i. $|2 \pi-6|$

Solution:

Since $\pi>3,2 \pi>6,2 \pi-6>0$ so $|2 \pi-6|=2 \pi-6$
ii. $|\sqrt{2}-2|$

Solution:

Since $\sqrt{2}<2, \sqrt{2}-2<0$ hence $|\sqrt{2}-2|=-(\sqrt{2}-2)$ or $2-\sqrt{2}$
(b) Use the definition of the distance between two numbers, including absolute value symbol, to write down the distance between $-\mathbf{7}$ and -4 , then find the distance.

Solution:

$$
\begin{align*}
d(-7,-4) & =|-7-(-4)| \tag{1}\\
& =|-3| \tag{2}\\
& =3 \tag{3}
\end{align*}
$$

(c) Let x, y, and z be real numbers such that $x<2, y<0$, and $2 \leq z \leq 4$. Answer the following:
i. Is $-z^{4} y^{3}$ positive, negative, or cannot be determined? No work is needed to justify your answer.

Solution:

Positive

ii. Is $x^{7} y^{23}$ positive, negative, or cannot be determined? No work is needed to justify your answer.

Solution:

Cannot be determined
iii. Is $z-5+y$ positive, negative, or cannot be determined? No work is needed to justify your answer.

Solution:

> Negative
(d) Add and simplify: $\frac{2}{\frac{9}{7}}+\frac{5}{12}+7^{0}$

Solution:

$$
\begin{align*}
\frac{2}{\frac{9}{7}}+\frac{5}{12}+7^{0} & =\frac{14}{9}+\frac{5}{12}+1 \tag{4}\\
& =\frac{56}{36}+\frac{15}{36}+\frac{36}{36} \tag{5}\\
& =\frac{107}{36} \tag{6}
\end{align*}
$$

(e) Simplify: $\frac{|-7-3|+|2|}{2|-4|}$

Solution:

$$
\begin{align*}
\frac{|-7-3|+|2|}{2|-4|} & =\frac{10+2}{8} \tag{7}\\
& =\frac{12}{8} \tag{8}\\
& =\frac{3}{2} \tag{9}
\end{align*}
$$

2. The following are unrelated. Leave your answers without negative exponents. (20 pts)
(a) $\left(-5 b^{3}\right)^{2} 7 a^{-3} a^{6}$

Solution:

$$
\begin{align*}
\left(-5 b^{3}\right)^{2} 7 a^{-3} a^{6} & =(-5)^{2}\left(b^{3}\right)^{2} 7 a^{3} \tag{10}\\
& =25 b^{6} 7 a^{3} \tag{11}\\
& =175 b^{6} a^{3} \tag{12}
\end{align*}
$$

(b) Simplify: $\frac{\sqrt{32 x^{2}}}{\sqrt{2 \sqrt{16}}}$

Solution:

$$
\begin{align*}
\frac{\sqrt{32 x^{2}}}{\sqrt{2 \sqrt{16}}} & =\frac{|x| \sqrt{2 \cdot 16}}{\sqrt{2 \cdot 4}} \tag{13}\\
& =\frac{|x| 4 \sqrt{2}}{2 \sqrt{2}} \tag{14}\\
& =2|x| \tag{15}
\end{align*}
$$

(c) Simplify: $\frac{2\left(x^{-2} y^{3}\right)^{3}}{8 x^{-3} y^{-1 / 3}}$

Solution:

$$
\begin{align*}
\frac{2\left(x^{-2} y^{3}\right)^{3}}{8 x^{-3} y^{-1 / 3}} & =\frac{2 x^{-6} y^{9}}{8 x^{-3} y^{-1 / 3}} \tag{16}\\
& =\frac{x^{-3} y^{\frac{27}{3}}}{4 y^{\frac{1}{3}}} \tag{17}\\
& =\frac{y^{\frac{28}{3}}}{4 x^{3}} \tag{18}
\end{align*}
$$

(d) Multiply to rewrite as a polynomial: $(\sqrt{x-1}+3)(\sqrt{x-1}-3)$

Solution:

$$
\begin{align*}
(\sqrt{x-1}+3)(\sqrt{x-1}-3) & =(\sqrt{x-1})^{2}-3^{2} \tag{19}\\
& =x-1-9 \tag{20}\\
& =x-10 \tag{21}
\end{align*}
$$

3. The following are unrelated: (12 pts)
(a) Find the domain of the expression (give your answer in interval notation): $\frac{x^{2}-9}{\sqrt{x}(x-3)}$

Solution: $x-3=0$ results in division by zero so $x=3$ must be excluded from the domain. As well $x>0$ since the square root of a negative number does not exist. So the answer is: $(0,3) \cup(\infty)$
(b) Combine into a single fraction: $\frac{1}{x^{2}-x-2}-\frac{3}{x+1}$

Solution:

$$
\begin{align*}
\frac{1}{x^{2}-x-2}-\frac{3}{x+1} & =\frac{1}{(x-2)(x+1)}-\frac{3}{x+1} \tag{22}\\
& =\frac{1-3(x-2)}{(x-2)(x+1)} \tag{23}\\
& =\frac{7-3 x}{(x-2)(x+1)} \tag{24}
\end{align*}
$$

(c) Evaluate the expression: $-\frac{1}{2} x^{2}-x^{-1}$ when $x=-4$

Solution: $-\frac{1}{2}(-4)^{2}-\frac{1}{-4}=-8+\frac{1}{4}=-\frac{32}{4}+\frac{1}{4}=-\frac{31}{4}$
4. The following are unrelated: (12 pts)
(a) Simplify: $\frac{3 x^{2}+12}{x^{2}-5 x} \cdot \frac{x^{2}-3 x-10}{x^{2}+4}$

Solution:

$$
\begin{align*}
\frac{3 x^{2}+12}{x^{2}-5 x} \cdot \frac{x^{2}-3 x-10}{x^{2}+4} & =\frac{3\left(x^{2}+4\right)}{x(x-5)} \cdot \frac{(x-5)(x+2)}{x^{2}+4} \tag{25}\\
& =\frac{3(x+2)}{x} \tag{26}
\end{align*}
$$

(b) Simplify the compound fraction: $\frac{\frac{3}{x^{2}}-\frac{1}{x}}{\frac{9}{x^{2}}-1}$

Solution:

$$
\begin{align*}
\frac{\frac{3}{x^{2}}-\frac{1}{x}}{\frac{9}{x^{2}}-1} & =\frac{\left(\frac{3-x}{x^{2}}\right)}{\left(\frac{9-x^{2}}{x^{2}}\right)} \tag{27}\\
& =\frac{3-x}{9-x^{2}} \tag{28}\\
& =\frac{3-x}{(3-x)(3+x)} \tag{29}\\
& =\frac{1}{3+x} \tag{30}
\end{align*}
$$

(c) Factor by grouping: $9 x^{3}-18 x^{2}-4 x+8$

Solution:

$$
\begin{align*}
9 x^{3}-18 x^{2}-4 x+8 & =9 x^{2}(x-2)-4(x-2) \tag{31}\\
& =(x-2)\left(9 x^{2}-4\right) \tag{32}\\
& =(x-2)\left((3 x)^{2}-2^{2}\right) \tag{33}\\
& =(x-2)(3 x+2)(3 x-2) \tag{34}
\end{align*}
$$

5. Is $x=-2$ a solution of the inequality $x^{3}-2 x<2 x$? (3 pts)

Solution:

No as $(-2)^{3}-2(-2)=-4=2(-2)$
6. Solve each of the following equations. If there are no solutions write NO SOLUTIONS: (15 pts)
(a) $-2 x-4=1+4 x$
(b) $\frac{3}{x-2}=\frac{x}{x^{2}-4}$

Solution:

$$
6 x=-5 \text { or } x=-\frac{5}{6}
$$

$$
\begin{align*}
& (x-2)(x+2) \cdot \frac{3}{x-2}=\frac{x}{(x-2)(x+2)} \cdot(x-2)(x+2) \tag{35}\\
& 3(x+2)=x \tag{36}\\
& 3 x+6=x \tag{37}\\
& 2 x=-6 \tag{38}\\
& x=-3 \tag{39}
\end{align*}
$$

(c) $|2 x-3|=3$

Solution:

$$
\begin{aligned}
& 2 x-3=3 \Longrightarrow x=3 \\
& 2 x-3=-3 \Longrightarrow x=0
\end{aligned}
$$

7. Solve each of the following equations. If there are no solutions write NO SOLUTIONS: (10 pts)
(a) $\sqrt{8-y}+2=y-4$

Solution:

$$
\begin{align*}
\sqrt{8-y}+2 & =y-4 \tag{40}\\
\sqrt{8-y} & =y-6 \tag{41}\\
8-y & =y^{2}-12 y+36 \tag{42}\\
y^{2}-11 y+28 & =0 \tag{43}\\
(y-7)(y-4) & =0 \tag{44}\\
y & =4,7 \tag{45}
\end{align*}
$$

Plugging into the original equation, we find $y=4$ to be extraneous. Hence $y=7$
(b) Solve for $h: \quad P=A+h d g$

Solution:

$$
\begin{align*}
P & =A+h d g \tag{46}\\
h d g & =P-A \tag{47}\\
h & =\frac{P-A}{d g} \tag{48}
\end{align*}
$$

8. Solve the following inequalities. Justify your answers by using a number line or sign chart if needed. Answers without full justification will not receive full credit. Express all answers in interval notation. (8 pts)
(a) $-3 x+1<6$

Solution:

$$
\begin{align*}
-3 x+1 & <6 \tag{49}\\
-3 x & <5 \tag{50}\\
x & >-\frac{5}{3} \tag{51}
\end{align*}
$$

Hence the interval of solution is $\left(-\frac{5}{3}, \infty\right)$
(b) $x^{3}-3 x^{2} \geq 0$

Solution:

We start by factoring the left hand side, and then make use of a number line/sign chart to choose the relevant interval of solution

$$
\begin{align*}
x^{3}-3 x^{2} & \geq 0 \tag{52}\\
x^{2}(x-3) & \geq 0 \tag{53}
\end{align*}
$$

Setting the left side equal to zero we get two values that make the left side zero: $x=0$ and $x=3$. Placing these on a number line and picking test values we obtain the following chart

Notice that $x=0$ is a solution. Hence the solution is $0 \cup[3, \infty)$.
9. Find all the solutions to the following equation, including the complex solutions (Hint: factoring will be important) $z^{3}=1$. (5 pts)

Solution:

$$
\begin{align*}
z^{3}-1 & =0 \tag{54}\\
(z-1)\left(z^{2}+z+1\right) & =0 \tag{55}
\end{align*}
$$

From which we conclude that $z=1$ or

$$
\begin{align*}
z & =\frac{-1 \pm \sqrt{(1)^{2}-4(1)(1)}}{2(1)} \tag{56}\\
& =\frac{-1 \pm \sqrt{-3}}{2} \tag{57}\\
& =\frac{-1 \pm \sqrt{3} i}{2} \tag{58}
\end{align*}
$$

