1. The following are unrelated. (7 pts)
(a) Place the correct symbol, $<$,$\rangle , or, =$ in the space between each of the following pair of numbers.
i. $\frac{2}{7} \quad \frac{8}{28}$

Solution:

Since $\frac{8}{28}=\frac{4 \cdot 2}{4 \cdot 7}=\frac{2}{7}$ then $\frac{2}{7}=\frac{8}{28}$
ii. $\sqrt{3} \quad \sqrt{2}$

Solution:

Since $\sqrt{b}>\sqrt{a}$ when $b>a$ then $\sqrt{3}>\sqrt{2}$.
(b) Let a and b be real numbers such that $a<0$ and $b<0$. Determine whether the following expression is positive, negative, or zero: $-4 a^{4} b^{3}$.

Solution:

Since a^{4} is positive and b^{3} is negative then $-4 a^{4} b^{3}$ is a negative number times a positive number times a negative number which is positive.
(c) True or False: $\sqrt{x^{2}+4}=x+2$. If false, pick a value for x and show, for this value, that the left side does not equal the right side.

Solution:

The answer is False because, for $x=1$, the left side becomes $\sqrt{1^{2}+4}=\sqrt{5}$ but on the right side $1+2=3$ and $\sqrt{5} \neq 3$.
2. The following are unrelated. Leave answers without negative exponents. (8 pts)
(a) Evaluate and simplify: $-\frac{1}{15}+\frac{3}{10}-\frac{1}{\frac{1}{3}}-4^{-1 / 2}+\sqrt{9}$

Solution:

$$
\begin{align*}
-\frac{1}{15}+\frac{3}{10}-\frac{1}{\frac{1}{3}}-4^{-1 / 2}+\sqrt{9} & =-\frac{2}{30}+\frac{9}{30}-3-\frac{1}{4^{1 / 2}}+3 \tag{1}\\
& =\frac{7}{30}-\frac{1}{2} \tag{2}\\
& =\frac{7}{30}-\frac{15}{30} \tag{3}\\
& =-\frac{8}{30} \tag{4}\\
& =-\frac{4}{15} \tag{5}
\end{align*}
$$

(b) Simplify: $-\frac{3 x^{-2}}{x^{-3}}+2(1-x)(x+3)$

Solution:

$$
\begin{align*}
-\frac{3 x^{-2}}{x^{-3}}+2(1-x)(x+3) & =-\frac{3 x^{3}}{x^{2}}+2\left(x+3-x^{2}-3 x\right) \tag{6}\\
& =-3 x+2 x+6-2 x^{2}-6 x \tag{7}\\
& =-2 x^{2}-7 x+6 \tag{8}
\end{align*}
$$

3. The following are unrelated. (16 pts)
(a) Subtract and simplify: $\frac{x+1}{x^{2}+4 x+4}-\frac{4}{x^{2}-2 x}$

Solution:

$$
\begin{align*}
\frac{x+1}{x^{2}+4 x+4}-\frac{4}{x^{2}-2 x} & =\frac{x+1}{(x+2)(x+2)}-\frac{4}{x(x-2)} \tag{9}\\
& =\frac{x(x+1)(x-2)}{x(x+2)(x+2)(x-2)}-\frac{4(x+2)(x+2)}{x(x-2)(x+2)(x+2)} \tag{10}\\
& =\frac{x(x+1)(x-2)-4(x+2)(x+2)}{x(x-2)(x+2)^{2}} \tag{11}\\
& =\frac{x^{3}-x^{2}-2 x-4-4 x^{2}-16 x-16}{x(x-2)(x+2)^{2}} \tag{12}\\
& =\frac{x^{3}-5 x^{2}-18 x-16}{x(x-2)(x+2)^{2}} \tag{13}
\end{align*}
$$

(b) Simplify: $\frac{\sqrt{r^{8}}}{\left(16 r^{2}\right)^{1 / 4}}$

Solution:

$$
\begin{align*}
\frac{\sqrt{r^{8}}}{\left(16 r^{2}\right)^{1 / 4}} & =\frac{r^{4}}{16^{1 / 4}\left(r^{2}\right)^{1 / 4}} \tag{14}\\
& =\frac{r^{4}}{2 r^{1 / 2}} \tag{15}\\
& =\frac{r^{7 / 2}}{2} \tag{16}
\end{align*}
$$

(c) Simplify: $\frac{\frac{2}{x+1}-1}{\frac{2}{x^{2}}-\frac{2}{x}}$

Solution:

$$
\begin{align*}
\frac{\frac{2}{x+1}-1}{\frac{2}{x^{2}}-\frac{2}{x}} & =\frac{\frac{2}{x+1}-\frac{x+1}{x+1}}{\frac{2}{x^{2}}-\frac{2 x}{x^{2}}} \tag{17}\\
& =\frac{\frac{-x+1}{x+1}}{\frac{2-2 x}{x^{2}}} \tag{18}\\
& =\frac{-x+1}{x+1} \cdot \frac{x^{2}}{2-2 x} \tag{19}\\
& =\frac{(1-x) x^{2}}{(x+1)(2)(1-x)} \tag{20}\\
& =\frac{x^{2}}{2(x+1)} \tag{21}
\end{align*}
$$

(d) Simplify the following: $\ln (1)-\ln (e)+\log (100)-\log _{3}\left(\frac{1}{9}\right)$ (Your answer should have no logarithms)

Solution:

Solving for one logarithm at a time:

$$
\begin{align*}
& \ln (1)=0 \tag{22}\\
& \ln (e)=1 \tag{23}\\
& \log (100)=2 \tag{24}\\
& \log _{3}\left(\frac{1}{9}\right)=\log _{3}\left(3^{-2}\right)=-2 \tag{25}
\end{align*}
$$

Putting that all together:

$$
\begin{align*}
\ln (1)-\ln (e)+\log (100)+\log _{3}\left(\frac{1}{9}\right) & =0-1+2-(-2) \tag{26}\\
& =3 \tag{27}
\end{align*}
$$

4. The following are unrelated: (6 pts)
(a) Simplify and write in $a+b i$ form: $(2-i)+4+2 i-i^{2}$

Solution:

$$
\begin{align*}
(2-i)+4+2 i-i^{2} & =2-i+4+2 i-(-1) \tag{28}\\
& =7+i \tag{29}
\end{align*}
$$

(b) Factor the following: $8 x^{3}-1$

Solution:

$$
\begin{align*}
8 x^{3}-1 & =(2 x)^{3}-1^{3} \tag{30}\\
& =(2 x-1)\left(4 x^{2}+2 x+1\right) \tag{31}
\end{align*}
$$

5. Solve the following equations for the indicated variable. If there are no solutions, write no solutions. (12 pts)
(a) Solve for x : $2 x^{3}-6 x^{2}=36 x$

Solution:

Our strategy is to get all terms on one side, a zero on the other side, and then factor.

$$
\begin{align*}
2 x^{3}-6 x^{2} & =36 x \tag{32}\\
2 x^{3}-6 x^{2}-36 x & =0 \tag{33}\\
2 x\left(x^{2}-3 x-18\right) & =0 \tag{34}\\
2 x(x-6)(x+3) & =0 \tag{35}
\end{align*}
$$

So we get answers: $x=0, x=6, x=-3$.
(b) Solve for w : $3 w-r=2 r-5 r w$

Solution:

The strategy here is the get all terms with a w on one side, all terms on the other side. Then factor and divide.

$$
\begin{align*}
3 w-r & =2 r-5 r w \tag{36}\\
3 w+5 r w & =2 r+r \tag{37}\\
w(3+5 r) & =3 r \tag{38}\\
w & =\frac{3 r}{3+5 r} \tag{39}
\end{align*}
$$

(c) Solve for $x: \ln (x)-\ln (2)=\ln (1-3 x)$

Solution:

We begin by using the laws of logarithms to rewrite the left hand side. Then we can use the one-to-one property for logarithms (if $\log _{b}\left(x_{1}\right)=\log _{b}\left(x_{2}\right)$ then $x_{1}=x_{2}$) to solve.

$$
\begin{align*}
\ln (x)-\ln (2) & =\ln (1-3 x) \tag{40}\\
\ln \left(\frac{x}{2}\right) & =\ln (1-3 x) \tag{41}
\end{align*}
$$

Resulting in $\frac{x}{2}=1-3 x$. Solving this we get:

$$
\begin{align*}
\frac{x}{2} & =1-3 x \tag{42}\\
\frac{x}{2}+3 x & =1 \tag{43}\\
\frac{7 x}{2} & =1 \tag{44}\\
x & =\frac{2}{7} \tag{45}
\end{align*}
$$

Checking this potential solution in the original equation we see it does indeed solve it so the answer is $x=\frac{2}{7}$.
6. For the two points $P(2,-3)$ and $Q(1,5)$: (11 pts)
(a) Find the slope of the line through the two points.

Solution:

$$
\begin{equation*}
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{5-(-3)}{1-2}=-8 \tag{46}
\end{equation*}
$$

(b) Find the equation of the line that passes through the points P and Q.

Solution:

$$
\begin{align*}
y-y_{1} & =m\left(x-x_{1}\right) \tag{47}\\
y-5 & =-8(x-1) \tag{48}\\
y & =-8 x+13 \tag{49}
\end{align*}
$$

So the answer is $y=-8 x+13$.
(c) Find the equation of the line through the point $R(0,0)$ that is parallel to the line found in part (b).

Solution:

A line parallel to $y=-8 x+13$ has slope $m=-8$. The line that passes through $(0,0)$ with slope $m=-8$ is:

$$
\begin{align*}
y-y_{1} & =m\left(x-x_{1}\right) \tag{50}\\
y-0 & =-8(x-0) \tag{51}\\
y & =-8 x \tag{52}
\end{align*}
$$

So the answer is $y=-8 x$.
7. Consider the functions: $r(x)=\ln (x+2)$ and $p(x)=e^{x}$. (8 pts)
(a) Find the domain of $r(x)$. Give your answer in interval notation.

Solution:

The domain of $r(x)$ includes values of x that make $\ln (x+2)$ a real number. We can solve this by graphing $r(x)=\ln (x+2)$.

From the graph we see that the domain is $(-2, \infty)$.
(b) Find $(p \circ r)(x)$.

Solution:

$$
(p \circ r)(x)=p(r(x))=r(\ln (x+2))=e^{\ln (x+2)}=x+2 \text {. }
$$

(c) Find the domain of $(p \circ r)(x)$. Give your answer in interval notation.

Solution:

Since the domain of $r(x)$ is $(-2, \infty)$, the domain of $(p \circ r)(x)$ is restricted to $(-2, \infty)$. The domain of $p(x)$ is all real numbers, which does not restrict the domain of $(p \circ r)(x)$ any further, so the final answer is $(-2, \infty)$.
8. For the rational function $R(x)=\frac{x^{2}-4}{x^{2}+2 x}$ answer the following (18 pts):
(a) Find the x and y-values of any hole(s). If there are none write NONE.

Solution:

We start by factoring $R(x)$:

$$
\begin{align*}
R(x) & =\frac{x^{2}-4}{x^{2}+2 x} \tag{53}\\
& =\frac{(x-2)(x+2)}{x(x+2)} \tag{54}\\
& =\frac{x-2}{x} \tag{55}
\end{align*}
$$

So there is a hole when $x+2=0$ at $x=-2$. The y-coordinate of the hole is found by plugging in $x=-2$ into the simplified fraction: $y=\frac{x-2}{x}$. We get $y=\frac{-2-2}{-2}=0$. So the hole located at (-2,2).
(b) Find the x-intercept(s). If there are none write NONE.

Solution:

Setting $y=0$ in the simplified rational function we get:

$$
\begin{align*}
\frac{x-2}{x} & =0 \tag{56}\\
x-2 & =0 \tag{57}\\
x & =2 \tag{58}
\end{align*}
$$

The only x-intercept is $(2,0)$.
(c) Find the y-intercept. If there are none write NONE.

Solution:

Setting $x=0$ in the simplified rational function, we get $y(0)=\frac{0-2}{0}$ which does not exist, so there is no y-intercept. NONE.
(d) Find the end behavior of the function.

Solution:

Using the simplified rational function: $y \rightarrow \frac{x}{x}=1$ as $x \rightarrow \pm \infty$ so there is a horizontal asymptote of $y=1$.
(e) Find all vertical asymptotes. If there are none write NONE.

Solution:

Setting the denominator of the simplified rational function equal to zero we get one vertical asymptote: $x=0$.
(f) Sketch the graph of $R(x)$ using your answers to parts a-e.

9. Write down a polynomial function, $P(x)$, that has the same intercepts, behavior at intercepts (cross or bounce), and end behavior as the graph below. You may leave your answer in factored form. (5 pts)

Solution:

The graph of $y=P(x)$ has zeros at $x=-2,0,1$ and crosses at $x=-2$ and $x=1$ and bounces (does not cross) at $x=1$. The polynomial should have odd multiplicity at $x=-2$ and $x=1$ and even multiplicity at $x=1$. So the polynomial has the form $y=x(x+2)(x-1)^{2}$. However, this has the wrong end behavior. The answer with the correct end behavior is: $P(x)=-x(x+2)(x-1)^{2}$.
10. Sketch the graph of the following functions. Label all intercepts and asymptotes as appropriate. (13 pts)
(a) $f(x)=\sqrt{x+1}$

Solution:

(b) $h(x)=\tan (x)$ on the restricted domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Solution:

(c) $q(x)= \begin{cases}-2 x-1 & \text { if } \quad x \leq-1 \\ 2 & \text { if } \quad-1<x \leq 0 \\ e^{x-1}-1 & \text { if } \quad x>0\end{cases}$

Solution:

(d) $k(x)=\tan ^{-1}(x)$

Solution:

11. Find the exact value: (15 pts)
(a) $\cos \left(\frac{3 \pi}{4}\right)$

Solution:

$$
\cos \left(\frac{3 \pi}{4}\right)=-\frac{\sqrt{2}}{2}
$$

(b) $\sin \left(-\frac{2 \pi}{3}\right)$

Solution:
$\sin \left(-\frac{2 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$
(c) $\sin ^{-1}\left(\frac{1}{2}\right)$

Solution:

$\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
(d) $\arctan (\sqrt{3})$

Solution:

$\arctan (\sqrt{3})=\frac{\pi}{3}$
(e) $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{6}\right)\right)$

Solution:

$$
\sin ^{-1}\left(\sin \left(\frac{5 \pi}{6}\right)\right)=\frac{\pi}{6}
$$

(f) $\sin \left(\frac{\pi}{12}\right)$

Solution:

$$
\begin{aligned}
& \sin \left(\frac{\pi}{12}\right)=\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{4}\right)-\sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{3}\right)=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)-\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)= \\
& \frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

12. Verify the identity: $\csc (\theta)=\cos ^{2}(\theta) \csc (\theta)+\sin (\theta)$. (5 pts)

This is one possible solution where we utilize $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$:

$$
\begin{align*}
L H S & =\cos ^{2}(\theta) \csc (\theta)+\sin (\theta) \tag{59}\\
& =\frac{\cos ^{2}(\theta)}{\sin (\theta)}+\sin (\theta) \tag{60}\\
& =\frac{\cos ^{2}(\theta)}{\sin (\theta)}+\frac{\sin ^{2}(\theta)}{\sin (\theta)} \tag{61}\\
& =\frac{\cos ^{2}(\theta)+\sin ^{2}(\theta)}{\sin (\theta)} \tag{62}\\
& =\frac{1}{\sin (\theta)} \tag{63}\\
& =\csc (\theta) \tag{64}\\
& =\text { RHS } \tag{65}
\end{align*}
$$

13. Find all solutions to the following equations: (8 pts)
(a) $2 \cos (\theta) \sin (\theta)-\cos (\theta)=0$

Solution:

By factoring we get:

$$
\begin{align*}
2 \cos (\theta) \sin (\theta)-\cos (\theta) & =0 \tag{66}\\
\cos (\theta)(2 \sin (\theta)-1) & =0 \tag{67}
\end{align*}
$$

and by using the multiplicative property of zero we get $\cos (\theta)=0$ and $2 \sin (\theta)-1=0 . \cos (\theta)=0$ has solutions $\theta=\frac{\pi}{2}+k 2 \pi$ where k is any integer. $2 \sin (\theta)-1=0$ has solutions when $\sin (\theta)=\frac{1}{2}$ which occurs when $\theta=\frac{\pi}{6}+k 2 \pi$ and $\theta=\frac{5 \pi}{6}+k 2 \pi$. The resulting solutions of the original equation are: $\theta=\frac{\pi}{2}+k 2 \pi$, $\theta=\frac{\pi}{6}+k 2 \pi$, and $\theta=\frac{5 \pi}{6}+k 2 \pi$.
(b) $\tan (4 \theta)=1$

Solution:

The equation, $\tan (4 \theta)=1$, is solved when $4 \theta=\frac{\pi}{4}+k 2 \pi$ and $4 \theta=\frac{5 \pi}{4}+k 2 \pi$ where k is any integer. Dividing both sides by 4 we find the solutions of the original equation are: $\theta=\frac{\pi}{16}+\frac{k \pi}{2}$ and $\theta=\frac{5 \pi}{16}+\frac{k \pi}{2}$.
14. To measure the height of the cloud cover at an airport, a worker shines a spotlight upward at an angle 75° from the horizontal. An observer 600m away measures the angle of elevation to the spot of light to be 45° (see image below). Find the height of the cloud cover. (6 pts)

Solution:

Starting with the right triangle involving the angle 45° and letting the length of the base from the person to the vertical line be y we can write down: $\tan \left(45^{\circ}\right)=\frac{h}{y}$. The second triangle gives us $\tan \left(75^{\circ}\right)=\frac{h}{600-y}$. Since $\tan \left(45^{\circ}\right)=1$, the first equation simplifies as $\frac{h}{y}=1$ and $h=y$. Substituting this into the second equation, we can solve for h :

$$
\begin{align*}
\tan \left(75^{\circ}\right) & =\frac{h}{600-h} \tag{68}\\
(600-h) \tan \left(75^{\circ}\right) & =h \tag{69}\\
600 \tan \left(75^{\circ}\right)-h \tan \left(75^{\circ}\right) & =h \tag{70}\\
600 \tan \left(75^{\circ}\right) & =h+h \tan \left(75^{\circ}\right) \tag{71}\\
600 \tan \left(75^{\circ}\right) & =h\left(1+\tan \left(75^{\circ}\right)\right) \tag{72}\\
h & =\frac{600 \tan \left(75^{\circ}\right)}{1+\tan \left(75^{\circ}\right)} \tag{73}
\end{align*}
$$

So the answer is $h=\frac{600 \tan \left(75^{\circ}\right)}{1+\tan \left(75^{\circ}\right)} \mathrm{m}$.
15. For $h(x)=3 \cos (2 x)(12 \mathrm{pts})$
(a) Identify the amplitude.

Solution:

Amplitude is $|a|=3$.
(b) Identify the period.

Solution:

Period is $\frac{2 \pi}{|b|}=\frac{2 \pi}{|2|}=\pi$.
(c) Identify the phase shift.

Solution:

Phase shift is $-\frac{c}{b}=-\frac{0}{2}=0$.
(d) Sketch one cycle of the graph of $h(x)$. Be sure to label at least two values on the x axis and clearly identify the amplitude.

(e) Is $h(x)$ odd, even, or neither? Be sure to justify your answer for full credit.

Solution:

Since the graph is periodic, repeating its shape every period π, then the graph on $[-\pi, 0]$ has the same shape as that on $[0, \pi]$ and is symmetric about the y-axis and is even. This can be seen by graphing $h(x)$ on the restricted domain $[-\pi, \pi]$.

