1. The following are unrelated: (20 pts)
(a) Use the distributive property to rewrite the expression (you do not need to carry out any mathematical operations):

$$
3(x+4)^{5}(x+1)^{3}-(x-2)^{4}(4)(x+1)^{3}
$$

Solution:

$3(x+4)^{5}(x+1)^{3}-(x-2)^{4}(4)(x+1)^{3}=(x+1)^{3}\left[3(x+4)^{5}-(x-2)^{4}(4)\right]$
(b) Add/Subtract as indicated: $-\frac{5}{12}-\frac{1}{4}+\frac{5}{6^{1}}+3 \sqrt{2}+\sqrt{2}$

Solution:
$-\frac{5}{12}-\frac{1}{4}+\frac{5}{6^{1}}+3 \sqrt{2}+\sqrt{2}=-\frac{5}{12}-\frac{3}{12}+\frac{10}{12}+3 \sqrt{2}+\sqrt{2}=\frac{2}{12}+4 \sqrt{2}=\frac{1}{6}+4 \sqrt{2}$.
(c) Let a and b be real numbers such that $a<0$ and $b>0$. Answer the following:
i. Is $-a+b$ positive or negative? No work is needed to justify your answer.

Solution:

Positive

ii. Is a^{18} positive or negative? No work is needed to justify your answer.

Solution:

Positive
(d) Multiply as indicated (give answer in $a+b i$ form): $\left(\frac{1}{2} i\right)\left(-2+\frac{1}{2} i\right)$

Solution:
$\left(\frac{1}{2} i\right)\left(-2+\frac{1}{2} i\right)=-i+\frac{1}{4} i^{2}=-i-\frac{1}{4}=-\frac{1}{4}-i$
(e) Simplify: $2+(3-x)(2 x+1)+x^{2}$.

Solution:

$2+(3-x)(2 x+1)+x^{2}=2+6 x+3-2 x^{2}-x+x^{2}=5+5 x-x^{2}$
2. The following are unrelated: (24 pts)
(a) Evaluate the expression: $\sqrt{24}$

Solution:

$\sqrt{24}=\sqrt{4 \cdot 6}=\sqrt{4} \cdot \sqrt{6}=2 \sqrt{6}$
(b) Evaluate the expression: $\frac{\sqrt[3]{32}}{\sqrt[3]{4}}$

Solution:

$\frac{\sqrt[3]{32}}{\sqrt[3]{4}}=\sqrt[3]{\frac{32}{4}}=\sqrt[3]{8}=2$
(c) Rewrite with only rational exponents (you do not need to carry out any mathematical operations, your answer should not have any roots):

$$
\sqrt[4]{3}+\sqrt{x^{2}-9}
$$

Solution:

$\sqrt[4]{3}+\sqrt{x^{2}-9}=3^{3^{1 / 4}+\left(x^{2}-9\right)^{1 / 2}}$
(d) Simplify (Give your answer without negative exponents): $\left(6 w^{-2} z^{3}\right)^{2}\left(2 z^{3}\right)$

Solution:

$$
\begin{aligned}
\left(6 w^{-2} z^{3}\right)^{2}\left(2 z^{3}\right) & =\left(36 w^{-4} z^{6}\right)\left(2 z^{3}\right) \\
& =\frac{72 z^{9}}{w^{4}}
\end{aligned}
$$

(e) Simplify (Give your answer without negative exponents): $4 x^{1 / 2}\left(x^{1 / 2}-x^{-1 / 4}\right)$

Solution:

$$
\begin{aligned}
4 x^{1 / 2}\left(x^{1 / 2}-x^{-1 / 4}\right) & =4 x^{1 / 2} x^{1 / 2}-4 x^{1 / 2} x^{-1 / 4} \\
& =4 x^{1 / 2+1 / 2}-4 x^{1 / 2-1 / 4} \\
& =4 x-4 x^{1 / 4}
\end{aligned}
$$

(f) Multiply: $\left(4 x^{4}+\frac{1}{x^{4}}\right)^{2}$

Solution:

$$
\begin{aligned}
\left(4 x^{4}+\frac{1}{x^{4}}\right)^{2} & =\left(4 x^{4}+\frac{1}{x^{4}}\right)\left(4 x^{4}+\frac{1}{x^{4}}\right) \\
& =\left(4 x^{4}\right)\left(4 x^{4}\right)+\left(4 x^{4}\right)\left(\frac{1}{x^{4}}\right)+\left(\frac{1}{x^{4}}\right)\left(4 x^{4}\right)+\left(\frac{1}{x^{4}}\right)\left(\frac{1}{x^{4}}\right) \\
& =16 x^{8}+4+4+\frac{1}{x^{8}} \\
& =16 x^{8}+8+\frac{1}{x^{8}}
\end{aligned}
$$

3. The following are unrelated: (20 pts)
(a) Factor completely (If not factorable write NF): $2 x^{2}-12 x+16$

Solution:

$$
\begin{aligned}
2 x^{2}-12 x+16 & =2\left(x^{2}-6 x+8\right) \\
& =2(x-4)(x-2)
\end{aligned}
$$

(b) Evaluate $x^{2}+16-\sqrt{2 x}$ for $x=2$

Solution:

$$
\begin{aligned}
2^{2}+16-\sqrt{2 \cdot 2} & =4+16-2 \\
& =18
\end{aligned}
$$

(c) Factor completely (Hint, factor out the lowest power of x): $x^{5 / 2}-x^{1 / 2}$

Solution:

$$
\begin{aligned}
x^{5 / 2}-x^{1 / 2} & =x^{1 / 2}\left(x^{5 / 2-1 / 2}-1\right) \\
& =x^{1 / 2}\left(x^{2}-1\right) \\
& =x^{1 / 2}(x-1)(x+1)
\end{aligned}
$$

(d) Simplify the complex fraction: $\frac{-2+\frac{4}{x+1}}{1-\frac{1}{x}}$

Solution:

$$
\begin{aligned}
\frac{-2+\frac{4}{x+1}}{1-\frac{1}{x}} & =\frac{-2 \frac{x+1}{x+1}+\frac{4}{x+1}}{\frac{x}{x}-\frac{1}{x}} \\
& =\frac{\frac{-2 x-2+4}{x+1}}{\frac{x-1}{x}} \\
& =\frac{-2 x+2}{x+1} \cdot \frac{x}{x-1} \\
& =\frac{-2(x-1)}{x+1} \cdot \frac{x}{x-1} \\
& =\frac{-2 x}{x+1}
\end{aligned}
$$

(e) Subtract: $\frac{1}{4 x+8}-\frac{x+3}{x^{2}-4}$

Solution:

$$
\begin{aligned}
\frac{1}{4 x+8}-\frac{x+1}{x^{3}-4 x} & =\frac{1}{4(x+2)}-\frac{x+3}{(x-2)(x+2)} \\
& =\frac{x-2}{4(x-2)(x+2)}-\frac{4(x+3)}{4(x-2)(x+2)} \\
& =\frac{x-2-4(x+3)}{4(x-2)(x+2)} \\
& =\frac{-3 x-14}{4(x-2)(x+2)}
\end{aligned}
$$

4. Suppose you know that b is a constant and that the equation $x^{2}+b x+2=0$ has a solution of $x=4$. Find b. (4 pts)

Solution:

Plugging in $x=4$ we can solve: $4^{2}+b(4)+2=0$ for b.

$$
\begin{aligned}
4^{2}+b(4)+2 & =0 \\
16+4 b+2 & =0 \\
4 b & =-18 \\
b & =-\frac{18}{4}=-\frac{9}{2}
\end{aligned}
$$

5. Solve each of the following equations: (12 pts)
(a) $2-\frac{3}{4} x=\frac{1}{2} x$

Solution:

We start by clearing the fractions by multiplying both sides of the equation by 4 .

$$
\begin{aligned}
2-\frac{3}{4} x & =\frac{1}{2} x \\
4\left(2-\frac{3}{4} x\right) & =4\left(\frac{1}{2} x\right) \\
4(2)-4\left(\frac{3}{4} x\right) & =4\left(\frac{1}{2} x\right) \\
8-3 x & =2 x \\
8 & =5 x \\
x & =\frac{8}{5}
\end{aligned}
$$

(b) $x^{2}=-3 x-2$

Solution:

We start by moving all terms to one side and then factoring.

$$
\begin{aligned}
x^{2} & =-3 x-2 \\
x^{2}+3 x+2 & =0 \\
(x+2)(x+1) & =0
\end{aligned}
$$

By the multiplicative property of zero, we set $x+2=0$ and $x+1=0$ resulting in solutions $x=-2$ and $x=-1$.
(c) $2+\sqrt{x}=x$

Solution:

We start by isolating the square root so we can square both sides. We then can solve the equation by factoring.

$$
\begin{aligned}
2+\sqrt{x} & =x \\
\sqrt{x} & =x-2 \\
x & =(x-2)^{2} \\
x & =x^{2}-4 x+4 \\
0 & =x^{2}-5 x+4 \\
0 & =(x-4)(x-1)
\end{aligned}
$$

This results in two potential solutions: $x=4$ and $x=1$. We must check both values:
Checking $x=4$ we get $2+\sqrt{4}=2+2=4$ which is a solution.
Checking $x=1$ we get $2+\sqrt{1}=2+1=3 \neq 1$ which is not a solution.
So the only solution is: $x=4$.
6. Solve each of the following equations: (12 pts)
(a) Solve for $x: T^{2}=2 a(x-z)$

Solution:

$$
\begin{aligned}
T^{2} & =2 a(x-z) \\
\frac{T^{2}}{2 a} & =x-z \\
\frac{T^{2}}{2 a}+z & =x
\end{aligned}
$$

So the answer is $x=\frac{T^{2}}{2 a}+z$.
(b) $\frac{1}{x^{2}+1}=\frac{4 x+1}{\left(x^{2}+1\right)^{2}}$

Solution:

$$
\begin{aligned}
\frac{1}{x^{2}+1} & =\frac{4 x+1}{\left(x^{2}+1\right)^{2}} \\
\left(x^{2}+1\right)^{2} \cdot \frac{1}{x^{2}+1} & =\left(x^{2}+1\right)^{2} \cdot \frac{4 x+1}{\left(x^{2}+1\right)^{2}} \\
x^{2}+1 & =4 x+1 \\
x^{2}-4 x & =0 \\
x(x-4) & =0
\end{aligned}
$$

Resulting in two potential solutions: $x=0$ and $x=4$. Plugging in $x=0$ and $x=4$ we see that both are in fact solutions.
(c) $|x-3|=7$

Solution:

The x-values that solve $|x-3|=7$ are found when we set $x-3=-7$ and $x-3=7$. This results in two solutions: $x=-4$ and $x=10$.
7. Solve the following inequalities. Justify your answers by using a number line or sign chart. Answers without full justification will not receive full credit. Express all answers in interval notation. (12 pts)
(a) $1-4 x<3$

Solution:

$$
\begin{aligned}
1-4 x & <3 \\
-4 x & <2 \\
x & >-\frac{2}{4} \\
x & >-\frac{1}{2}
\end{aligned}
$$

The solution in interval notation is $\left(-\frac{1}{2}, \infty\right)$.
(b) $x^{3}+2 x^{2} \geq 0$

Solution:

$$
\begin{aligned}
x^{3}+2 x^{2} & \geq 0 \\
x^{2}(x+2) & \geq 0
\end{aligned}
$$

This results in two values that make the left side zero: $x=0$ and $x=-2$.
Placing these on a number line and picking test values we get the solution $[-2, \infty)$.

