INSTRUCTIONS: Simplify and box all your answers. Write neatly and show all work. A correct answer with incorrect or no supporting work may receive no credit. Books, notes, electronic devices (such as calculator or other unauthorized electronic resources) are not permitted. Give all answers in exact form.

1. The following are unrelated. Simplify answers and leave without negative exponents. (28 pts)
(a) Simplify: $5 x\left(x-x^{3}\right)-\left(-3 x^{2}-1\right)^{2}$

Solution

$$
\begin{align*}
5 x\left(x-x^{3}\right)-\left(-3 x^{2}-1\right)^{2} & =5 x^{2}-5 x^{4}-\left(-3 x^{2}-1\right)\left(-3 x^{2}-1\right) \tag{1}\\
& =5 x^{2}-5 x^{4}-\left(9 x^{4}+3 x^{2}+3 x^{2}+1\right) \tag{2}\\
& =5 x^{2}-5 x^{4}-9 x^{4}-6 x^{2}-1 \tag{3}\\
& =-14 x^{4}-x^{2}-1 \tag{4}
\end{align*}
$$

(b) Simplify: $\left(-x y^{3}\right)^{2}\left(\frac{x^{-5}}{y^{-2}}\right)+3 \frac{y^{8}}{x^{3}}$

Solution

$$
\begin{align*}
\left(-x y^{3}\right)^{2}\left(\frac{x^{-5}}{y^{-2}}\right)+3 \frac{y^{8}}{x^{3}} & =x^{2} y^{6}\left(\frac{y^{2}}{x^{5}}\right)+3 \frac{y^{8}}{x^{3}} \tag{5}\\
& =\frac{y^{8}}{x^{3}}+3 \frac{y^{8}}{x^{3}} \tag{6}\\
& =4 \frac{y^{8}}{x^{3}} \tag{7}
\end{align*}
$$

(c) Add: $\frac{x}{x^{2}-1}+\frac{1}{x^{2}+x}$

Solution

$$
\begin{align*}
\frac{x}{x^{2}-1}+\frac{1}{x^{2}+x} & =\frac{x}{(x-1)(x+1)}+\frac{1}{x(x+1)} \tag{8}\\
& =\frac{x^{2}}{(x-1)(x+1) x}+\frac{x-1}{x(x+1)(x-1)} \tag{9}\\
& =\frac{x^{2}+x-1}{x(x-1)(x+1)} \tag{10}
\end{align*}
$$

Note that $x^{2}+x-1$ does not factor in a way that leads to further simplification.
(d) Multiply: $(24 i-8)(4 i+1)$. Give answer in $a+b i$ form.

Solution

$$
\begin{align*}
(24 i-8)(4 i+1) & =96 i^{2}+24 i-32 i-8 \tag{11}\\
& =96(-1)-8 i-8 \tag{12}\\
& =-104-8 i \tag{13}
\end{align*}
$$

(e) Multiply: $\left(x^{1 / 2}-y^{1 / 3}\right)\left(x^{1 / 2}+y^{1 / 3}\right)$

Solution

$$
\begin{align*}
\left(x^{1 / 2}-y^{1 / 3}\right)\left(x^{1 / 2}+y^{1 / 3}\right) & =x^{1 / 2} x^{1 / 2}+x^{1 / 2} y^{1 / 3}-y^{1 / 3} x^{1 / 2}-y^{1 / 3} y^{1 / 3} \tag{14}\\
& =x-y^{2 / 3} \tag{15}
\end{align*}
$$

(f) Simplify: $\frac{\frac{1}{x-2}+1}{\frac{1}{x-2}}$

Solution

$$
\begin{align*}
\frac{\frac{1}{x-2}+1}{\frac{1}{x-2}} & =\frac{\frac{1}{x-2}+\frac{x-2}{x-2}}{\frac{1}{x-2}} \tag{16}\\
& =\frac{\frac{x-1}{x-2}}{\frac{1}{x-2}} \tag{17}\\
& =x-1 \tag{18}
\end{align*}
$$

(g) $3^{4 \log _{3}(x)}+\log _{8}(4)+\log _{8}(2)-\ln \left(e^{2}\right)+\log _{2}(32)$ (Your answer should have no logarithms)

Solution

$$
\begin{align*}
3^{4 \log _{3}(x)}+\log _{8}(4)+\log _{8}(2)-\ln \left(e^{2}\right)+\log _{2}(32) & =3^{\log _{3}\left(x^{4}\right)}+\log _{8}(4 \cdot 2)-2+5 \tag{19}\\
& =x^{4}+\log _{8}(8)+3 \tag{20}\\
& =x^{4}+1+3 \tag{21}\\
& =x^{4}+4 \tag{22}
\end{align*}
$$

2. Solve the following equations for x : (16 pts)
(a) $\frac{1}{3} x-\frac{3}{4}=\frac{1}{2} x$

Solution

$$
\begin{align*}
\frac{1}{3} x-\frac{3}{4} & =\frac{1}{2} x \tag{23}\\
12\left(\frac{1}{3} x-\frac{3}{4}\right) & =12\left(\frac{1}{2} x\right) \tag{24}\\
4 x-9 & =6 x \tag{25}\\
-9 & =2 x \tag{26}\\
x & =-\frac{9}{2} \tag{27}
\end{align*}
$$

(b) $\sqrt{6}-3 x^{2}=x^{2}$

Solution

$$
\begin{align*}
\sqrt{6}-3 x^{2} & =x^{2} \tag{28}\\
\sqrt{6} & =4 x^{2} \tag{29}\\
\frac{\sqrt{6}}{4} & =x^{2} \tag{30}\\
\pm \sqrt{\frac{\sqrt{6}}{4}} & =x \tag{31}\\
x & = \pm \frac{\sqrt[4]{6}}{2} \tag{32}
\end{align*}
$$

Leading to two possible answers: $x= \pm \frac{\sqrt[4]{6}}{2}$. Checking both answers in the original equation we see that both solve the original equation.
(c) $\log _{2}(1-x)-\log _{2}(x)=2$

Solution

$$
\begin{align*}
\log _{2}(1-x)-\log _{2}(x) & =2 \tag{33}\\
\log _{2}\left(\frac{1-x}{x}\right) & =2 \tag{34}\\
\frac{1-x}{x} & =2^{2} \tag{35}\\
1-x & =4 x \tag{36}\\
1 & =5 x \tag{37}\\
x & =\frac{1}{5} \tag{38}
\end{align*}
$$

Checking $x=\frac{1}{5}$ in the original equation we see that it solves the original equation.
(d) $6=2 e^{-x-1}$

Solution

$$
\begin{align*}
6 & =2 e^{-x-1} \tag{39}\\
3 & =e^{-x-1} \tag{40}\\
\ln (3) & =-x-1 \tag{41}\\
\ln (3)+1 & =-x \tag{42}\\
-\ln (3)-1 & =x \tag{43}
\end{align*}
$$

3. For $g(x)=\frac{x^{3}+5 x^{2}+6 x}{x^{2}-9}$ answer the following (16 pts):
(a) Find the domain of $g(x)$. Give your answer in interval notation.

Solution

The domain is all real numbers except where $x^{2}-9=0$.

$$
\begin{align*}
x^{2}-9 & =0 \tag{44}\\
(x-3)(x+3) & =0 \tag{45}
\end{align*}
$$

So the domain is all real numbers except $x=-3,3$. In interval notation: $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$.
(b) Find the x, y-coordinates for any hole(s). If there are none write NONE.

Solution

Factoring the numerator and denominator: $g(x)=\frac{x^{3}+5 x^{2}+6 x}{x^{2}-9}=\frac{x(x+3)(x+2)}{(x-3)(x+3)}=\frac{x(x+2)}{x-3}$ if $x \neq-3$.
So there is a hole at $x=-3$. We substitute $x=-3$ into the reduced fraction and get the y-coordinate: $y=\frac{-3(-3+2)}{-3-3}=\frac{3}{-6}=-\frac{1}{2}$.
So the coordinates of the hole are: $\left(-3,-\frac{1}{2}\right)$.
(c) Find any horizontal or slant asymptotes. If there are none write NONE.

Solution

Since the degree in the numerator is exactly one more than the denominator then there is a slant asymptote. To find the slant asymptote we utilize long division:

$$
\begin{gathered}
\frac{x+5}{x-3} \begin{array}{c}
x^{2}+2 x+0 \\
-\frac{\left(x^{2}-3 x\right)}{5 x+0}
\end{array}
\end{gathered}
$$

We can stop the long division as soon as we have the slant asymptote and find the slant asymptote is $y=x+5$.
(d) Find any vertical asymptotes. If there are none write NONE.

Solution

There is a vertical asymptote when the simplified fraction results in division by zero. Setting $x-3=0$ we get one vertical asymptote of $x=3$.
4. Answer the following for the polynomial $P(x)$. (8 pts)
(a) Sketch the graph of $y=P(x)$ with the following properties:
i. $y \rightarrow \infty$ as $x \rightarrow-\infty$ and $y \rightarrow-\infty$ as $x \rightarrow \infty$.
ii. The graph crosses the x-axis at $x=-1$ and touches, but does not cross, the x-axis at $x=2$. The graph has y-intercept of $(0,-3)$. The graph has no other intercepts.

Solution

(b) Write down a polynomial that satisfies the given information.

Solution

Starting with the x-intercepts we get: $P(x)=(x-2)^{2}(x+1)$. However this polynomial has the wrong end behavior and a y-intercept of $(0,4)$. Multiplying the polynomial by $-\frac{3}{4}$ results in the correct end behavior and y-intercept. The answer then is: $P(x)=-\frac{3}{4}(x-2)^{2}(x+1)$. Note there are other possible answers such as: $P(x)=-\frac{3}{16}(x-2)^{4}(x+1)^{3}$.
5. Sketch the graph of the following functions. Label all intercepts and asymptotes as appropriate. (13 pts)
(a) $f(x)=x^{2}-1$

Solution

(b) $h(x)=\tan (x)$ on the restricted domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Solution

(c) $q(x)=\left\{\begin{array}{lll}2 x-1 & \text { if } & x<0 \\ \ln x & \text { if } & x>0\end{array}\right.$

Solution

(d) $k(x)=\tan ^{-1}(x)$

Solution

6. For the given graph of $f(x)$ in blue; sketch the shape of the graph $-f(x-2)$ on the same graph. (4 pts)

Solution

7. You are standing 48 meters from the base of a building. You estimate that the angle of elevation to the top of the 82 nd floor (the observatory) is 77°. If the total height of the building is another 109 meters above the 82 nd floor, what is the height of the building? (5 pts)

Solution

Let h represent the height of the 82 nd floor. The height to the 82 nd floor is found with the relationship $\tan \left(77^{\circ}\right)=\frac{h}{48}$ giving us $h=48 \tan \left(77^{\circ}\right)$. Since the top of the building is another 109 meters above the 82 nd floor then the total height of the building is: $48 \tan \left(77^{\circ}\right)+109$ meters.
8. Given $f(x)=\sqrt{x}$ and $g(x)=x^{4}-2 x^{2}-1$ answer the following: (7 pts)
(a) Find $(g \circ f)(x)$ and find the domain.

Solution

$$
\begin{align*}
(g \circ f)(x) & =g(f(x)) \tag{46}\\
& =g(\sqrt{x}) \tag{47}\\
& =(\sqrt{x})^{4}-2(\sqrt{x})^{2}-1 \tag{48}\\
& =x^{2}-2 x-1 \tag{49}
\end{align*}
$$

The domain of $(g \circ f)(x)$ is the intersection of the domain of $x^{2}-2 x-1$ and $f(x)=\sqrt{x}$. So the domain of the composition is $[0, \infty)$.
(b) Is $g(x)$ odd, even, or neither? Justify your answer for credit.

Solution

$$
\begin{align*}
g(-x) & =(-x)^{4}-2(-x)^{2}-1 \tag{50}\\
& =x^{4}-2 x^{2}-1 \tag{51}\\
& =g(x) \tag{52}
\end{align*}
$$

Since $g(-x)=g(x)$ then $g(x)$ is even.
9. Find the exact value: (15 pts)
(a) $\sin \left(\frac{5 \pi}{4}\right)$

Solution

$\sin \left(\frac{5 \pi}{4}\right)=-\frac{\sqrt{2}}{2}$
(b) $\cos \left(-\frac{\pi}{6}\right)$

Solution

$\cos \left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
(c) $\arctan (-1)$

Solution

$\arctan (-1)=-\frac{\pi}{4}$
(d) $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)$

Solution

$$
\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)=\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
$$

(e) $\cos \left(\cos ^{-1}(1)\right)$

Solution

$\cos \left(\cos ^{-1}(1)\right)=\cos (0)=1$
10. For a specific angle θ suppose we know that $\sin \theta>0$ and θ lies in the interval $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$. What quadrant does θ lie in? (4 pts)

Solution

$\sin \theta>0$ in quadrants I and II and $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ specifies angles in quadrants II and III so the only quadrant that satisfies both pieces of information is Quadrant II.
11. Verify the identity: $\frac{1+\sec \theta}{\tan \theta+\sin \theta}=\csc \theta$. (5 pts)

Solution

Starting with the left hand side we convert each term to be in terms of $\sin \theta$ and $\cos \theta$ and simplify the complex fraction:

$$
\begin{align*}
\frac{1+\sec \theta}{\tan \theta+\sin \theta} & =\frac{1+\frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}+\sin \theta} \tag{53}\\
& =\frac{\frac{\cos \theta}{\cos \theta}+\frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}+\sin \theta \frac{\cos \theta}{\cos \theta}} \tag{54}\\
& =\frac{\frac{\cos \theta+1}{\cos \theta}}{\frac{\sin \theta+\sin \theta \cos \theta}{\cos \theta}} \tag{55}\\
& =\frac{\cos \theta+1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta+\sin \theta \cos \theta} \tag{56}\\
& =\frac{\cos \theta+1}{\sin \theta+\sin \theta \cos \theta} \tag{57}\\
& =\frac{\cos \theta+1}{\sin \theta(1+\cos \theta)} \tag{58}\\
& =\frac{1}{\sin \theta} \tag{59}\\
& =\csc \theta / / \tag{60}
\end{align*}
$$

12. Suppose we know that $\sec \theta=-\frac{9}{4}$ for θ in quadrant II. Find $\sin (2 \theta)$. (4 pts)

Solution

$\sin (2 \theta)=2 \sin \theta \cos \theta$ so we need to find $\sin \theta$ and $\cos \theta$.
To find $\cos \theta$ we see that: $\sec \theta=-\frac{9}{4}$ so $\cos \theta=-\frac{4}{9}$.
To find $\sin \theta$ we set up a reference triangle and use the Pythagorean theorem to get $\sin \theta=\frac{\sqrt{65}}{9}$.
The answer is then: $\sin (2 \theta)=2 \sin \theta \cos \theta=2 \cdot\left(\frac{\sqrt{65}}{9}\right) \cdot\left(-\frac{4}{9}\right)=-\frac{8 \sqrt{65}}{81}$.
13. Find all solutions to the following equations: (8 pts)
(a) $\sin (3 \theta)=\frac{1}{2}$

Solution

$\sin (3 \theta)=\frac{1}{2}$ when $3 \theta=\frac{\pi}{6}+2 n \pi$ and $3 \theta=\frac{5 \pi}{6}+2 n \pi$ where n is any integer. Dividing both sides by 3 we get solutions: $\theta=\frac{\pi}{18}+\frac{2 n \pi}{3}$ and $\theta=\frac{5 \pi}{18}+\frac{2 n \pi}{3}$.
(b) $\frac{\sqrt{3}}{2} \tan \theta+\tan \theta \cos \theta=0$

Solution

$$
\begin{align*}
& \frac{\sqrt{3}}{2} \tan \theta+\tan \theta \cos \theta=0 \tag{61}\\
& \tan \theta\left(\frac{\sqrt{3}}{2}+\cos \theta\right)=0 \tag{62}
\end{align*}
$$

We get two equations to solve: $\tan \theta=0$ and $\cos \theta=-\frac{\sqrt{3}}{2}$. The first equation, $\tan \theta=0$, has solutions $\theta=2 n \pi$ and $\theta=\pi+2 n \pi$ where n is any integer (we can condense these solutions into $\theta=n \pi$). The second equation, $\cos \theta=-\frac{\sqrt{3}}{2}$, has solutions $\theta=\frac{5 \pi}{6}+2 n \pi$ and $\theta=\frac{7 \pi}{6}+2 n \pi$. So the solutions of the original equation are: $\theta=n \pi, \theta=\frac{5 \pi}{6}+2 n \pi$, and $\theta=\frac{7 \pi}{6}+2 n \pi$ for n any integer.
14. Find the exact value for each: (8 pts)
(a) $3 \cos ^{2}\left(-13^{\circ}\right)+3 \sin ^{2}\left(-13^{\circ}\right)$

Solution

$3 \cos ^{2}\left(-13^{\circ}\right)+3 \sin ^{2}\left(-13^{\circ}\right)=3\left(\cos ^{2}\left(-13^{\circ}\right)+\sin ^{2}\left(-13^{\circ}\right)\right)=3(1)=3$
(b) $\cos \left(\frac{\pi}{12}\right)$

Solution

Using a half angle formula and noting $\cos \left(\frac{\pi}{12}\right)>0$ we get $\cos \left(\frac{\pi}{6}\right)=\sqrt{\frac{1+\cos \left(\frac{\pi}{6}\right)}{2}}=\sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}=$ $\frac{\sqrt{2+\sqrt{3}}}{2}$. Note that we could also use the difference of two angles formula here with $\cos \left(\frac{\pi}{12}\right)=\cos \left(\frac{\pi}{3}-\frac{\pi}{4}\right)$.
15. For $f(x)=3 \cos (2 x)$ (9 pts)
(a) Identify the amplitude.

Solution

3
(b) Identify the period.

Solution

π
(c) Identify the phase shift.

Solution

0
(d) Sketch one cycle of the graph of $f(x)$. Be sure to label relevant values on x and y axes.

