1. Add/subtract/divide/multiply as indicated: (6 pts)
(a) $\frac{7}{3}-\frac{\frac{3}{2}}{9}+3^{-1}$

Solution:

$$
\begin{align*}
\frac{7}{3}-\frac{\frac{3}{2}}{9}+3^{-1} & =\frac{7}{3}-\frac{3}{2} \cdot \frac{1}{9}+\frac{1}{3} \tag{1}\\
& =\frac{8}{3}-\frac{1}{6} \tag{2}\\
& =\frac{16}{6}-\frac{1}{6} \tag{3}\\
& =\frac{15}{6} \tag{4}\\
& =\frac{5}{2} \tag{5}
\end{align*}
$$

(b) $\left(e^{x}\right)^{3}-e^{x}\left(e^{2 x}-2 e^{-x}\right)$

Solution:

$$
\begin{align*}
\left(e^{x}\right)^{3}-e^{x}\left(e^{2 x}-2 e^{-x}\right) & =e^{3 x}-e^{x} \cdot e^{2 x}+e^{x} \cdot 2 e^{-x} \tag{6}\\
& =e^{3 x}-e^{3 x}+2 e^{0} \tag{7}\\
& =e^{3 x}-e^{3 x}+2 \tag{8}\\
& =2 \tag{9}
\end{align*}
$$

2. The following are unrelated. (10 pts)
(a) Place the correct symbol, $<$,$\rangle , or, =$ in the space between each of the following pair of numbers.
i. $\frac{5}{12} \quad \frac{4}{9}$

Solution:

The numbers are more easily compared if we get them to have the same denominator:

$$
\frac{4}{9}=\frac{16}{36} \text { and } \frac{5}{12}=\frac{15}{36}
$$

We see then that: $\frac{15}{36}<\frac{16}{36}$ and so $\frac{5}{12}<\frac{4}{9}$
ii. $-\sqrt{2} \quad-\sqrt{3}$

Solution:

Since $\sqrt{2}<\sqrt{3}$ then we can multiply both sides by -1 and, flipping the inequality, we get $-\sqrt{2>}-\sqrt{3}$
(b) Let x and y be real numbers such that $x<0$ and $y<0$. Determine whether the following expression is positive, negative, or zero: $-\frac{x^{7}}{8 y^{3}}$.

Solution:

x^{7} is negative when x is negative.
y^{3} is negative when y is negative.
So $\frac{x^{7}}{8 y^{3}}$ is positive and thus $-\frac{x^{7}}{8 y^{3}}$ is negative.
(c) Rewrite the following without absolute value symbols:
i. $|e-1|$

Solution:

Since $e-1$ is positive then we can simply drop the inequality: $|e-1|=e-1$.
ii. $|x-3|$ where $x<3$

Solution:

Since x is less than 3 then $x-3$ is negative. In order to remove the absolute value, we need to make $x-3$ positive so we multiply $x-3$ by -1 :

$$
|x-3|=-(x-3)
$$

3. The following are unrelated. Leave answers without negative exponents. (6 pts)
(a) Simplify: $(2 r-3)^{2}-\frac{54\left(3 r^{2}\right)^{-3}}{r^{-7}}$

Solution:

$$
\begin{align*}
(2 r-3)^{2}-\frac{54\left(3 r^{2}\right)^{-3}}{r^{-7}} & =4 r^{2}-12 r+9-54\left(3^{-3} \cdot r^{-6}\right) r^{7} \tag{10}\\
& =4 r^{2}-12 r+9-\frac{54}{27} \cdot r \tag{11}\\
& =4 r^{2}-14 r+9 \tag{12}
\end{align*}
$$

(b) Evaluate and simplify: $\frac{\cos \left(\frac{\pi}{3}\right)}{\sqrt{2}}-8^{-1 / 2}$

Solution:

$$
\begin{align*}
\frac{\cos \left(\frac{\pi}{3}\right)}{\sqrt{2}}-8^{-1 / 2} & =\frac{\frac{1}{2}}{\sqrt{2}}-\frac{1}{\sqrt{8}} \tag{13}\\
& =\frac{1}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}} \tag{14}\\
& =0 \tag{15}
\end{align*}
$$

4. The following are unrelated. (6 pts)
(a) Simplify: $\frac{x^{2}+1}{x^{2}-1} \cdot \frac{x^{2}-3 x+2}{3 x^{4}+3 x^{2}}$

Solution:

$$
\begin{align*}
\frac{x^{2}+1}{x^{2}-1} \cdot \frac{x^{2}-3 x+2}{3 x^{4}+3 x^{2}} & =\frac{x^{2}+1}{(x+1)(x-1)} \cdot \frac{(x-1)(x-2)}{3 x^{2}\left(x^{2}+1\right)} \tag{16}\\
& =\frac{x-2}{3 x^{2}(x+1)} \tag{17}
\end{align*}
$$

(b) Multiply and simplify: $(\sqrt{x}-3 \sqrt{y})(\sqrt{x}+3 \sqrt{y})$

Solution:

$$
\begin{align*}
(\sqrt{x}-3 \sqrt{y})(\sqrt{x}+3 \sqrt{y}) & =\sqrt{x} \sqrt{x}-\sqrt{x} 3 \sqrt{y}-3 \sqrt{y} \sqrt{x}+3 \sqrt{y} 3 \sqrt{y} \tag{18}\\
& =x-9 y \tag{19}
\end{align*}
$$

5. The following are unrelated. (6 pts)
(a) Simplify: $\frac{1+\frac{1}{x-2}}{\frac{x}{x-2}-\frac{1}{x-2}}$

Solution:

$$
\begin{align*}
\frac{1+\frac{1}{x-2}}{\frac{x}{x-2}-\frac{1}{x-2}} & =\frac{\frac{x-2}{x-2}+\frac{1}{x-2}}{\frac{x}{x-2}-\frac{1}{x-2}} \tag{20}\\
& =\frac{\frac{x-1}{x-2}}{\frac{x-1}{x-2}} \tag{21}\\
& =1 \tag{22}
\end{align*}
$$

(b) Simplify the following: $\log (1)+\frac{\log _{2}\left(\frac{1}{2}\right)}{\log _{2}(8)}-e^{\ln 4}$ (Your answer should have no logarithms)

Solution:

$$
\begin{align*}
\log (1)+\frac{\log _{2}\left(\frac{1}{2}\right)}{\log _{2}(8)}-e^{\ln 4} & =0+\frac{-\log _{2}(2)}{\log _{2}\left(2^{3}\right)}-4 \tag{23}\\
& =\frac{-\log _{2}(2)}{3 \log _{2}(2)}-4 \tag{24}\\
& =-\frac{1}{3}-4 \tag{25}\\
& =-\frac{13}{3} \tag{26}
\end{align*}
$$

6. The following are unrelated: (7 pts)
(a) Multiply and simplify: $(2-3 i)(-1+i)$

Solution:

$$
\begin{align*}
(2-3 i)(-1+i) & =-2+2 i+3 i-3 i^{2} \tag{27}\\
& =-2+5 i-3(-1) \tag{28}\\
& =-2+5 i+3 \tag{29}\\
& =1+5 i \tag{30}
\end{align*}
$$

(b) Solve the following equation over the complex numbers. $x^{2}+4 x+5=0$

Solution:

$$
\begin{align*}
x & =\frac{-4 \pm \sqrt{(4)^{2}-4(1)(5)}}{2(1)} \tag{31}\\
& =\frac{-4 \pm \sqrt{16-20}}{2} \tag{32}\\
& =\frac{-4 \pm \sqrt{-4}}{2} \tag{33}\\
& =\frac{-4 \pm 2 i}{2} \tag{34}\\
& =-2 \pm i \tag{35}
\end{align*}
$$

7. Solve the following equations for the indicated variable. If there are no solutions, write no solutions. (12 pts)
(a) Solve for a : $\frac{5}{6} a-\frac{1}{2}=\frac{a}{2}-\frac{2}{3}$

Solution: We can first get rid of the fractions by multiplying both sides of the equality by the least common denominator, which in this case is 6 .

$$
\begin{array}{rl}
6 \cdot\left(\frac{5}{6} a-\frac{1}{2}\right) & =\left(\frac{a}{2}-\frac{2}{3}\right) \cdot 6 \\
5 a-3 & =3 a-4 \\
2 a & =-1 \\
a & a=-\frac{1}{2} \tag{39}
\end{array}
$$

(b) Solve for x : $\sqrt{x^{2}+4}+2=2 x$

Solution: We first want to get the radical alone on one side of the equality, then square both sides to get rid of the square root.

$$
\begin{align*}
\sqrt{x^{2}+4}+2 & =2 x \tag{40}\\
\sqrt{x^{2}+4} & =2 x-2 \tag{41}\\
\left(\sqrt{x^{2}+4}\right)^{2} & =(2 x-2)^{2} \tag{42}\\
x^{2}+4 & =4 x^{2}-8 x+4 \tag{43}\\
0 & =3 x^{2}-8 x \tag{44}\\
0 & =x(3 x-8) \tag{45}\\
x & =0 \text { and } x=\frac{8}{3} \tag{46}
\end{align*}
$$

Since we started with a radical equation, we must check our solutions. For $x=0$:

$$
\sqrt{0^{2}+4}+2 \neq 2(0) \mathrm{X}
$$

And for $x=\frac{8}{3}$, note that the Right Hand Side of the original equation simplifies to $2 \cdot \frac{8}{3}=\frac{16}{3}$ so we check the Left Hand Side:

$$
\begin{align*}
\sqrt{\left(\frac{8}{3}\right)^{2}+4}+2 & =\sqrt{\frac{64}{9}+4}+2 \tag{47}\\
& =\sqrt{\frac{64}{9}+\frac{36}{9}}+2 \tag{48}\\
& =\sqrt{\frac{100}{9}}+2 \tag{49}\\
& =\frac{10}{3}+2 \tag{50}\\
& =\frac{10}{3}+\frac{6}{3} \tag{51}\\
& =\frac{16}{3} \checkmark \tag{52}
\end{align*}
$$

Therefore, the only solution to this equation is $x=\frac{8}{3}$.
(c) Solve for $t: \ln (t)=\ln (2)+\ln (t+2)$

Solution:

$$
\begin{align*}
\ln (t) & =\ln (2)+\ln (t+2) \tag{53}\\
\ln (t) & =\ln (2(t+2)) \tag{54}\\
\ln (t) & =\ln (2 t+4) \tag{55}\\
t & =2 t+4 \tag{56}\\
t & =-4 \tag{57}
\end{align*}
$$

Since we started with a logarithmic equation, we must check our solutions. Plugging in $t=-4$, would give us $\ln (-4)$ which is undefined as -4 is not in the domain of logarithmic functions. Therefore, there is no solution.
8. For the two points $P(5,-1)$ and $Q(2,3):(6 \mathrm{pts})$
(a) Find the slope of the line through the two points.

Solution:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-(-1)}{5-2}=-\frac{4}{3}
$$

(b) Find the equation of the line that passes through the points P and Q.

Solution:

Using the formula, $y=m x+b$, to find b we can use use either point given, using $Q(2,3)$ as the point

$$
\begin{align*}
3 & =-\frac{4}{3}(2)+b \tag{58}\\
3 & =-\frac{8}{3}+b \tag{59}\\
b & =\frac{17}{3} \tag{60}
\end{align*}
$$

Therefore, the equation of the line is $y=-\frac{4}{3} x+\frac{17}{3}$.

Alternate Solution:

Alternatively, we can use $y-y_{1}=m\left(x-x_{1}\right)$:

$$
\begin{align*}
y-3 & =-\frac{4}{3}(x-2) \tag{61}\\
y-3 & =-\frac{4}{3} x+\frac{8}{3} \tag{62}\\
y & =-\frac{4}{3} x+\frac{17}{3} \tag{63}
\end{align*}
$$

9. Consider the functions: $f(x)=\frac{1}{x-1}$ and $g(x)=e^{x}$. (8 pts)
(a) Find $\left(\frac{g}{f}\right)(x)$.

Solution:

$$
\begin{align*}
\left(\frac{g}{f}\right)(x) & =\frac{g(x)}{f(x)} \tag{64}\\
& =\frac{e^{x}}{\frac{1}{x-1}} \tag{65}\\
& =e^{x}(x-1) \tag{66}
\end{align*}
$$

(b) Find $(f \circ g)(x)$.

Solution:

$$
\begin{align*}
(f \circ g)(x) & =f(g(x)) \tag{67}\\
& =f\left(e^{x}\right) \tag{68}\\
& =\frac{1}{e^{x}-1} \tag{69}
\end{align*}
$$

(c) Find the domain of $(f \circ g)(x)$. Give your answer in interval notation.

Solution:

We start finding the domain by setting the denominator equal to zero:

$$
\begin{align*}
e^{x}-1 & =0 \tag{70}\\
e^{x} & =1 \tag{71}\\
x & =\ln (1) \tag{72}\\
x & =0 \tag{73}
\end{align*}
$$

Since the domain of $g(x)=e^{x}$ is $(-\infty, \infty)$ then the domain of the composition is $(-\infty, 0) \bigcup(0, \infty)$
10. For the polynomial function $P(x)=2(x-1)^{2}(x+2)(10 \mathrm{pts})$
(a) Indicate on a graph or use arrow notation to indicate the end behavior of $P(x)$.

Solution: $\quad P(x) \rightarrow-\infty$ as $x \rightarrow-\infty$ and $P(x) \rightarrow \infty$ as $x \rightarrow \infty$
(b) Find all zeros of $P(x)$ and identify the multiplicity for each.

Solution:

$$
\begin{align*}
2(x-1)^{2}(x+2) & =0 \tag{74}\\
(x-1)^{2}(x+2) & =0 \tag{75}\\
(x-1)^{2} & =0 \text { or } x+2=0 \tag{76}\\
x & =1 \text { and } x=-2 \tag{77}
\end{align*}
$$

So the zeros are $x=1$ with multiplicity 2 and $x=-2$ with multiplicity 1 .
(c) Find the y-intercept.

Solution:

$$
\begin{align*}
P(0) & =2(0-1)^{2}(0+2) \tag{78}\\
& =2(-1)^{2}(2) \tag{79}\\
& =2(1)(2) \tag{80}\\
& =4 \tag{81}
\end{align*}
$$

So the y-intercept is $(0,4)$
(d) Sketch the graph of $P(x)$ using parts (a) through (c).

11. For the rational function $R(x)=\frac{x^{3}+7 x^{2}+12 x}{x^{2}-3 x}$ answer the following (10 pts):
(a) Find the x-coordinate of any hole(s). If there are no hole(s) write NONE.

Solution:

We start by factoring the numerator and denominator to see if any factors cancel.

$$
\begin{equation*}
\frac{(x+3)(x+4) x}{(x-3) x}=\frac{(x+3)(x+4)}{x-3} \tag{82}
\end{equation*}
$$

Since x cancels between the numerator and denominator then there is a hole with x-coordinate of $x=0$.
(b) Find the y-coordinate of any hole(s). If there are no hole(s) write NONE.

Solution:

Plugging in our value from part (a) into the simplified function we get the y-coordinate of the hole:

$$
\begin{align*}
\frac{(0+3)(0+4)}{(0-3)} & =\frac{(3)(4)}{(-3)} \tag{83}\\
& =-4 \tag{84}
\end{align*}
$$

So the y-coordinate of the hole is -4 and the hole is located at $(0,-4)$.
(c) Determine the end behavior of $R(x)$.

Solution:

Since the degree in the numerator is exactly one higher than the degree in the denominator then there is a slant asymptote. To find the slant asymptote, we long divide:

$$
\begin{array}{r}
x+10 \\
x-3) x^{2}+7 x+12 \\
-\frac{\left(x^{2}-3 x\right)}{10 x+12} \\
-\left(10 x-\frac{30)}{42}\right.
\end{array}
$$

So the slant asymptote is given by the quotient $y=x+10$.
(d) Find all vertical asymptote(s). If there are none write NONE.

Solution:

Now that we have the simplified rational function $y=\frac{x^{2}+7 x+12}{x-3}$ the vertical asymptote is found by setting the denominator equal to zero. We get $x-3=0$ so the vertical asymptote is $x=3$.
12. Sketch the graph of the following functions. Label all intercepts and asymptotes as appropriate. (12 pts)
(a) $f(x)=x^{2}-2$

(b) $h(x)=\sin (x)$ on the restricted domain $[0,2 \pi]$

(c) $q(x)=\left\{\begin{array}{lll}1 & \text { if } \quad x \leq-2 \\ 2 x & \text { if } \quad-2<x \leq 0 \\ \ln (x) & \text { if } \quad x>0\end{array}\right.$

(d) $k(x)=\csc (x)$ on the restricted domain $[0,2 \pi]$

13. Use the graph of the function $T(x)$, with domain $[-4 \pi, 4 \pi]$, below to answer the following: (8 pts)

(a) Solve the equation $T(x)=0$.

Solution: $x=-3 \pi, \frac{-3 \pi}{2}, 0, \frac{3 \pi}{2}, 3 \pi$
(b) Solve the inequality $T(x)>0$. Give your answer in interval notation.

Solution: $\left(-3 \pi, \frac{-3 \pi}{2}\right) \cup\left(0, \frac{3 \pi}{2}\right) \cup(3 \pi, 4 \pi]$
(c) Identify a restriction of the domain of $T(x)$ such that the range is preserved and the graph is one-to-one.

Solution: Any one of the following interval restrictions on the domain preserve the range:
$\left[\frac{-15 \pi}{4}, \frac{-9 \pi}{4}\right]$ or $\left[\frac{-9 \pi}{4}, \frac{-3 \pi}{4}\right]$ or $\left[\frac{-3 \pi}{4}, \frac{3 \pi}{4}\right]$ or $\left[\frac{3 \pi}{4}, \frac{9 \pi}{4}\right]$ or $\left[\frac{9 \pi}{4}, \frac{15 \pi}{4}\right]$
(d) Is $T(x)$ odd, even, or neither?

Solution:

Since $T(x)$ is symmetric about the origin, then the function is odd.
14. Find the exact value: (15 pts)
(a) $\sin (-\pi)$

Solution:

(b) $\cos \left(\frac{5 \pi}{6}\right)$

Solution:
$-\frac{\sqrt{3}}{2}$
(c) $\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)$

Solution:

$\frac{\pi}{4}$
(d) $\cos ^{-1}\left(\cos \left(-\frac{\pi}{6}\right)\right)$

Solution:

$$
\begin{align*}
\cos ^{-1}\left(\cos \left(-\frac{\pi}{6}\right)\right) & =\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \tag{85}\\
& =\frac{\pi}{6} \tag{86}
\end{align*}
$$

(e) $\sin \left(75^{\circ}\right)$

Solution:

$$
\begin{align*}
\sin \left(75^{\circ}\right) & =\sin \left(30^{\circ}+45^{\circ}\right) \tag{87}\\
& =\sin \left(30^{\circ}\right) \cos \left(45^{\circ}\right)+\sin \left(45^{\circ}\right) \cos \left(30^{\circ}\right) \tag{88}\\
& =\frac{1}{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} \tag{89}\\
& =\frac{\sqrt{2}+\sqrt{6}}{4} \tag{90}
\end{align*}
$$

(f) $\cos \left(\frac{\pi}{8}\right)$

Solution:

First note that $\frac{\pi}{8}$ is in quadrant I so $\cos \left(\frac{\pi}{8}\right)$ is positive. Now we apply the half angle formula:

$$
\begin{align*}
\cos \left(\frac{\pi}{8}\right) & =\cos \left(\frac{\frac{\pi}{4}}{2}\right) \tag{91}\\
& =\sqrt{\frac{1+\cos \left(\frac{\pi}{4}\right)}{2}} \tag{92}\\
& =\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}} \tag{93}\\
& =\sqrt{\frac{2+\sqrt{2}}{4}} \tag{94}\\
& =\sqrt{\frac{\sqrt{2+\sqrt{2}}}{2}} \tag{95}
\end{align*}
$$

15. Verify the identity: $\frac{\csc \theta-\sin \theta}{\sin \theta}=\cot ^{2} \theta$. (4 pts)

Solution:

Starting with the Left Hand Side, we rewrite $\csc \theta$ in terms of $\sin \theta$ and then simplify the complex fraction by:

$$
\begin{align*}
\text { LHS }: \frac{\csc \theta-\sin \theta}{\sin \theta} & =\frac{\frac{1}{\sin \theta}-\sin \theta}{\sin \theta}, & & \text { using } \csc \theta=\frac{1}{\sin \theta} \tag{96}\\
& =\frac{\frac{1}{\sin \theta}-\sin \theta}{\sin \theta} \cdot \frac{\sin \theta}{\sin \theta}, & & \text { multiplying top and bottom of the main fraction bar by } \sin \theta \tag{97}\\
& =\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}, & & \text { after multiplying by } \sin \theta \tag{98}\\
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta}, & & \text { using } \sin ^{2} \theta+\cos ^{2} \theta=1, \text { or } \cos ^{2} \theta=1-\sin ^{2} \theta \tag{99}\\
& =\cot ^{2} \theta_{/ /,} & & \text {since } \frac{\cos \theta}{\sin \theta}=\cot \theta \tag{100}
\end{align*}
$$

16. Find all solutions to the following equations: (8 pts)
(a) $\cos \theta \tan \theta-3 \tan \theta=0$

Solution:

We start by factoring out the $\tan \theta$

$$
\begin{align*}
\cos \theta \tan \theta-3 \tan \theta & =0 \tag{101}\\
\tan \theta(\cos \theta-3) & =0 \tag{102}
\end{align*}
$$

By the multiplicative property of zero we set $\tan \theta=0$ and $\cos \theta-3=0$. $\tan \theta=0$ when $\sin \theta=0$ which happens at $\theta=0+k 2 \pi$ and $\theta=\pi+k 2 \pi$ where k is any integer. $\cos \theta-3=0$ is solved if $\cos \theta=3$ which cannot happen since the largest $\cos \theta$ can be is 1 . So the only solutions to the original equation are $\theta=0+k 2 \pi$ and $\theta=\pi+k 2 \pi$ or in simplified form $\theta=k \pi$.
(b) $\sin \left(\frac{\theta}{3}\right)=\frac{1}{2}$

Solution:

$\sin \left(\frac{\theta}{3}\right)=\frac{1}{2}$ is solved when $\frac{\theta}{3}=\frac{\pi}{6}+k 2 \pi$ and $\frac{\theta}{3}=\frac{5 \pi}{6}+k 2 \pi$ where k is any integer. The resulting solutions for θ occur at $\theta=\frac{\pi}{2}+k 6 \pi$ and $\theta=\frac{5 \pi}{2}+k 6 \pi$.
17. For $m(x)=2 \cos \left(x-\frac{\pi}{4}\right)$ (10 pts)
(a) Identify the amplitude.

Solution:

The amplitude is $|a|=|2|=2$
(b) Identify the period.

Solution:

The period is $\frac{\text { period of cosine }}{|b|}=\frac{2 \pi}{|1|}=2 \pi$
(c) Identify the phase shift.

Solution:

The phase shift is $-\frac{c}{b}=-\frac{-\frac{\pi}{4}}{1}=\frac{\pi}{4}$
(d) Sketch one cycle of the graph of $m(x)$. Label at least two values on the x-axis and clearly identify the amplitude.

Solution:

18. A water tower is located 325 ft from a building. From a window in the building, an observer notes that the angle of elevation to the top of the tower is 39° and that the angle of depression to the bottom of the tower is 25°. Recall: You don't have a calculator, so leave answers in exact form. (6 pts)

(a) How high is the window?

Solution:

Let's label the side of the right triangle opposite 25° to be x. We can then write:

$$
\begin{equation*}
\tan \left(25^{\circ}\right)=\frac{x}{325} \tag{103}
\end{equation*}
$$

Solving for x the height of the window is: $325 \tan \left(25^{\circ}\right) \mathrm{ft}$.
(b) How tall is the tower?

Solution:

Each given angle defines a right triangle that we can use trigonometry to work with. Similarly to part (a) we can label the side opposite 25° to be x and the side opposite 39° to be y. We can then write:

$$
\begin{equation*}
\tan \left(25^{\circ}\right)=\frac{x}{325} \tag{104}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \left(39^{\circ}\right)=\frac{y}{325} \tag{105}
\end{equation*}
$$

Solving for x and y respectively, we can write: $325 \tan \left(25^{\circ}\right)=x$ and $325 \tan \left(39^{\circ}\right)=y$. The height of the tower is $x+y$ so we find the height of the tower to be: $325 \tan \left(25^{\circ}\right)+325 \tan \left(39^{\circ}\right) \mathrm{ft}$.

