1. Sketch the shape of the graph of a rational function, $g(x)$, that satisfies all of the given information. Label all intercepts and asymptotes on the graph. (4 pts)
i. The graph has a slant asymptote: $y=x+3$
ii. The graph bounces (touches but does not cross) at x-intercept: $(-2,0)$
iii. The graph has no other x-intercepts.
iv. The graph has a vertical asymptote: $x=-1$.

2. Consider the graph of a rational function below. Write down a rational function, $R(x)$, whose graph has the same vertical asymptote, horizontal asymptote, hole (as labeled), and x-intercept as that of the graph. (4 pts)

Solution:

We start by picking a rational function with x-intercept $(4,0)$ and vertical asymptote $x=-2$:

$$
f(x)=\frac{x-4}{x+2}
$$

However this function does not have a hole at $x=0$. To include a hole, we multiply top and bottom by x :

$$
g(x)=\frac{x(x-4)}{x(x+2)}
$$

This new function has an x-intercept at $(4,0)$, vertical asymptote at $x=-2$, and hole at $x=0$. The last thing to check is the y-coordinate of the hole:

$$
\begin{align*}
\frac{0-4}{0+2} & =\frac{-4}{2} \tag{1}\\
& =-2 \tag{2}
\end{align*}
$$

Which matches the graph. So our final answer is: $R(x)=\frac{x(x-4)}{x(x+2)}$.
3. (a) Simplify (rewrite without \log s or exponents): $-\log _{3}(27)+\log (1)+\ln \left(e^{2}\right)+10^{0}$ (4 pts)

Solution:

$$
\begin{align*}
-\log _{3}(27)+\log (1)+\ln \left(e^{2}\right)+10^{0} & =-3+0+2+1 \tag{3}\\
& =0 \tag{4}
\end{align*}
$$

(b) Rewrite as a single \log arithm: $4 \log (x)-\frac{1}{2} \log (y)+\log (z)(4 \mathrm{pts})$

Solution:

$$
\begin{align*}
4 \log (x)-\frac{1}{2} \log (y)+\log (z) & =\log \left(x^{4}\right)-\log \left(y^{1 / 2}\right)+\log (z) \tag{5}\\
& =\log \left(\frac{x^{4}}{y^{1 / 2}}\right)+\log (z) \tag{6}\\
& =\log \left(\frac{x^{4} z}{y^{1 / 2}}\right) \tag{7}
\end{align*}
$$

4. For parts (a) and (b) sketch the graphs. Be sure to label any asymptote(s) and intercept(s) for each graph. (10 pts)
(a) $f(x)=\ln (x-1)$
(b) $g(x)=-3^{x}$

Solution:

(c) For the function from part (b) find the value: $g\left(3 \log _{3} 2\right)$

Solution:

$$
\begin{align*}
g\left(3 \log _{3} 2\right) & =-3^{3 \log _{3} 2} \tag{8}\\
& =-3^{\log _{3}\left(2^{3}\right)} \tag{9}\\
& =-2^{3} \tag{10}\\
& =-8 \tag{11}
\end{align*}
$$

5. Solve the following equations for x. If there are no solutions write "no solutions" (be sure to justify answer for full credit). (8 pts)
(a) $10^{x^{2}-1}=10^{7-7 x}$

Solution:

Both sides have the same base of 10 , so we can equate exponents by utilizing the one-to-one property for exponential functions and then solve for x :

$$
\begin{align*}
x^{2}-1 & =7-7 x \tag{12}\\
x^{2}+7 x-8 & =0 \tag{13}\\
(x+8)(x-1) & =0 \tag{14}
\end{align*}
$$

So we have two solutions: $x=1, x=-8$.
(b) $8=2^{-3 x-1}$

Solution:

One method to solve this is to rewrite 8 as 2^{3} and then use the one-to-one property for exponential functions.

$$
\begin{align*}
2^{3} & =2^{-3 x-1} \tag{15}\\
3 & =-3 x-1 \tag{16}\\
4 & =-3 x \tag{17}\\
-\frac{4}{3} & =x \tag{18}
\end{align*}
$$

So we get our answer: $x=-\frac{4}{3}$
6. Solve the following equations for x. If there are no solutions write "no solutions" (be sure to justify answer for full credit). (8 pts)
(a) $2 x=(x-5) \ln (3)$

Solution:

Since $\ln (3)$ is a constant we can optionally make the algebra look more familiar by substituting $c=\ln (3)$:

$$
\begin{align*}
2 x & =(x-5) \ln (3) \tag{19}\\
2 x & =(x-5) c \tag{20}\\
2 x & =c x-5 c \tag{21}\\
2 x-c x & =-5 c \tag{22}\\
x(2-c) & =-5 c \tag{23}\\
x & =\frac{-5 c}{2-c} \tag{24}
\end{align*}
$$

Replacing $c=\ln (3)$ back in we get our answer $x=-\frac{5 \ln (3)}{2-\ln (3)}$
(b) $\log _{3}(2 x-4)-\log _{3}(2)=\log _{3}\left(\frac{7}{2} x+1\right)$

Solution:

We start by combining the logarithms on the left so that we can apply the one-to-one property for logarithmic functions:

$$
\begin{align*}
\log _{3}(2 x-4)-\log _{3}(2) & =\log _{3}\left(\frac{7}{2} x+1\right) \tag{25}\\
\log _{3}\left(\frac{2 x-4}{2}\right) & =\log _{3}\left(\frac{7}{2} x+1\right) \tag{26}\\
\frac{2 x-4}{2} & =\frac{7}{2} x+1 \tag{27}\\
2 x-4 & =7 x+2 \tag{28}\\
x & =-\frac{6}{5} \tag{29}
\end{align*}
$$

Because this is a logarithmic equation, we need to check if $x=-\frac{6}{5}$ is actually a solution:
On the left hand side we get: $\log _{3}\left(2\left(-\frac{6}{5}\right)-4\right)-\log _{3}(2)=\log _{3}\left(-\frac{32}{5}\right)-\log _{3}(2)$ which does not exist. So there are no solutions.
7. Simplify the expression: $\left(7^{2 x}\right)^{3}+7^{-x}\left(7^{x}+7^{-2 x}\right)$ (4 pts)

Solution:

$$
\begin{align*}
\left(7^{2 x}\right)^{3}+7^{-x}\left(7^{x}+7^{-2 x}\right) & =7^{6 x}+7^{0}+7^{-3 x} \tag{30}\\
& =7^{6 x}+1+7^{-3 x} \tag{31}
\end{align*}
$$

8. The half-life of cobalt- 60 is known to be 5 years. A scientist has a 12 mg (milligram) sample of cobalt- 60 . (8 pts)
(a) How much of the 12 mg sample of cobalt- 60 will remain after 10 years?

Solution:

Half of the original substance remains after 5 years. So after 5 years: $\frac{1}{2} \cdot 12=6 \mathrm{mg}$ remains.
After another 5 years half of 6 mg remains, so after 10 years: $\frac{1}{2} \cdot 6=3 \mathrm{mg}$ remains of the original sample.
(b) Find a function $m(t)=m_{\circ} 2^{-t / h}$ that models the mass remaining after t years.

Solution:

Let $m_{\circ}=12 \mathrm{mg}$ be the initial mass corresponding to $t=0$. The half-life is 5 years, so $h=5$ and we have $m(t)=12 \cdot 2^{-t / 5}$
(c) According to the model, how long will it take until 17% of the initial sample remains? As usual, give your answer in exact form (do not attempt to approximate with a rounded value answer).

Solution:

$m(t)$ represents the mass at any time $t .17 \%$ of the initial mass remaining corresponds to $0.17 m_{\circ}$. So we get:

$$
\begin{align*}
m(t) & =m_{0} \cdot 2^{-t / 5} \tag{32}\\
0.17 m_{\circ} & =m_{0} \cdot 2^{-t / 5} \tag{33}
\end{align*}
$$

And solving for t we find:

$$
\begin{align*}
0.17 m_{\circ} & =m_{0} \cdot 2^{-t / 5} \tag{34}\\
0.17 & =2^{-t / 5} \tag{35}\\
\log _{2}(0.17) & =-\frac{t}{5} \tag{36}\\
-5 \log _{2}(0.17) & =t \tag{37}
\end{align*}
$$

So the time is: $t=-5 \log _{2}(0.17)$.
9. The following are unrelated. (12 pts)
(a) Determine whether the following two angles are coterminal or not. Make sure to justify your answer to receive credit: $\frac{34 \pi}{3}, \frac{20 \pi}{3}$

Solution:

To find if the two angles are coterminal, we can subtract 2π from the larger one repeatedly and see if we can equate to the smaller angle.

$$
\begin{align*}
\frac{34 \pi}{3}-2 \pi & =\frac{34 \pi}{3}-\frac{6 \pi}{3} \tag{38}\\
& =\frac{28 \pi}{3} \tag{39}
\end{align*}
$$

We try again:

$$
\begin{align*}
\frac{28 \pi}{3}-2 \pi & =\frac{28 \pi}{3}-\frac{6 \pi}{3} \tag{40}\\
& =\frac{22 \pi}{3} \tag{41}
\end{align*}
$$

If we try one more time we would get $\frac{16 \pi}{3}$ which is smaller than $\frac{20 \pi}{3}$ so the given angles are not coterminal.
(b) The point, (x, y), lies on the unit circle $x^{2}+y^{2}=1$ in quadrant IV. If $x=\frac{2}{\sqrt{7}}$ find y.

Solution:

$$
\begin{align*}
\left(\frac{2}{\sqrt{7}}\right)^{2}+y^{2} & =1 \tag{42}\\
\frac{4}{7}+y^{2} & =1 \tag{43}\\
y^{2} & =\frac{3}{7} \tag{44}\\
y & = \pm \sqrt{\frac{3}{7}} \tag{45}
\end{align*}
$$

Since we are in quadrant IV, y is negative. Therefore, $y=-\sqrt{\frac{3}{7}}$.
(c) For an angle θ in standard position, suppose we know $\cos (\theta)<0$ and $\sin (\theta)=-\frac{1}{4}$. What quadrant does the terminal side of θ lie?

Solution:

Since we know that $\cos (\theta)<0$ is true and $\cos (\theta)$ is the x-coordinate of the point on the unit circle that lies on the terminal side of θ, then we know that the terminal side of θ lies in quadrants II or III.
$\sin (\theta)=-\frac{1}{4}$ means that the y-coordinate of the point on the unit circle that lies on the terminal side of θ is negative which happens when the terminal side of θ lies in quadrants III or IV.

The only quadrant that satisfies both pieces of information is quadrant III.
(d) Simplify: $11 \sin ^{2}\left(\frac{\pi}{9}\right)+11 \cos ^{2}\left(\frac{\pi}{9}\right)$

Solution:

We want to apply: $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ but first we need to factor out the 11 :

$$
\begin{align*}
11 \sin ^{2}\left(\frac{\pi}{9}\right)+11 \cos ^{2}\left(\frac{\pi}{9}\right) & =11\left(\sin ^{2}\left(\frac{\pi}{9}\right)+\cos ^{2}\left(\frac{\pi}{9}\right)\right) \tag{46}\\
& =11(1) \tag{47}\\
& =11 \tag{48}
\end{align*}
$$

10. Sketch each angle in standard position on the unit circle.
(a) $\theta=\frac{5 \pi}{3}(2 \mathrm{pts})$
(b) $\theta=-\frac{3 \pi}{4}(2 \mathrm{pts})$

Solution:

(a)

(b)

11. Answer the following for $\tan (\theta)=\frac{2}{7}$ where θ lies in quadrant III.
(a) Sketch a triangle that represents the given information (2 pts).

Solution:

(b) Find $\cot \theta(2 \mathrm{pts})$

Solution:

We can use the fact that $\cot (\theta)=\frac{1}{\tan (\theta)}$ and that we are given the value of $\tan (\theta)$:

$$
\begin{align*}
\cot (\theta) & =\frac{1}{\tan (\theta)} \tag{49}\\
& =\frac{1}{2} \tag{50}\\
& =\frac{7}{2} \tag{5}
\end{align*}
$$

(c) Find $\sin \theta(3 \mathrm{pts})$

Solution:

To find $\sin (\theta)$, we must first find the distance from the origin to the point (we can use Pythagorean identity for this):

$$
\begin{align*}
r^{2} & =2^{2}+7^{2} \tag{52}\\
& =53 \tag{53}\\
& =\sqrt{53} \tag{54}
\end{align*}
$$

Using SOHCAHTOA we find the answer:

$$
\sin (\theta)=-\frac{2}{\sqrt{53}}
$$

12. Find the exact value of each of the following. If a value does not exist write DNE. (3 pts each)
(a) $\cos \left(-150^{\circ}\right)$
(b) $\sin \left(\frac{\pi}{2}\right)$

Solution:

$\cos \left(-150^{\circ}\right)=-\frac{\sqrt{3}}{2}$
(c) $\tan \left(\frac{\pi}{6}\right)$

Solution:
$\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$
(e) $\sec \left(\frac{3 \pi}{4}\right)$

Solution:

$\sec \left(\frac{3 \pi}{4}\right)=\frac{1}{\left(\frac{-1}{\sqrt{2}}\right)}=-\quad-\sqrt{2}$

Solution:

$$
\sin \left(\frac{\pi}{2}\right)=1
$$

(d) $\csc \left(\frac{7 \pi}{6}\right)$

Solution:

$$
\csc \left(\frac{7 \pi}{6}\right)=\frac{1}{\sin \left(\frac{7 \pi}{6}\right)}=\frac{1}{-\frac{1}{2}}=-2
$$

13. A company is designing a new corporate graphic and they have decided to take two circular sectors (one with central angle 60° and the other with central angle 90°) from inside a circle that has a radius of 3 inches (image 1 below) and reorient them into the new graphic (image 2 below). Find the area of the graphic in image 2. (4 pts)

Solution:

First, we need to convert the given angles into radians: $\quad 60^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{\pi}{3} \mathrm{rad}$ and $90^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{\pi}{2} \mathrm{rad}$
Area of the top sector with central angle 60° is given by: $\quad A_{1}=\frac{1}{2}\left(3^{2}\right) \frac{\pi}{3}=\frac{3 \pi}{2} \mathrm{in}^{2}$
Area of the bottom sector with central angle 90° is given by: $A_{2}=\frac{1}{2}\left(3^{2}\right) \frac{\pi}{2}=\frac{9 \pi}{4} \mathrm{in}^{2}$
Hence the total area is given by:

$$
\begin{align*}
A_{1}+A_{2} & =\frac{3 \pi}{2}+\frac{9 \pi}{4} \tag{55}\\
& =\frac{6 \pi}{4}+\frac{9 \pi}{4} \tag{56}\\
& =\frac{15 \pi}{4} \mathrm{in}^{2} \tag{57}
\end{align*}
$$

14. A 13 ft ladder is leaning against a vertical wall such that a triangle is formed between the ground, ladder, and wall. The angle the ladder makes with the wall is 60°. Find the height of the wall. (4 pts)

Solution:

We start be drawing a diagram and labeling the height the ladder reaches on the wall h.

Using SOHCAHTOA we get:
$\cos \left(60^{\circ}\right)=\frac{a d j}{h y p}=\frac{h}{13}$
Solving for h we get:
$h=13 \cos \left(60^{\circ}\right)=\frac{13}{2} \mathrm{ft}$

Alternate solution:

We can see that the angle of elevation is 30° since the sum of the interior angles of a triangle is 180°.
$\sin \left(30^{\circ}\right)=\frac{o p p}{h y p}=\frac{h}{13}$
Solving for h, we obtain
$h=13 \sin \left(30^{\circ}\right)=\frac{13}{2} \mathrm{ft}$

