1. Answer the following for the given graph of a function $f(x)$. Give answers in interval notation where relevant (12 pts):

(a) Identify the domain of f.

Solution:

$(-3,4]$
(b) Identify the the range of f.

Solution:
$[-2,0) \cup[1,1]$
(c) Find $(f+f)(-1)$.

Solution:

$(f+f)(-1)=f(-1)+f(-1)=-2-2=-4$
(d) Find $f(-3)$ if it exists. If the value does not exist write "DNE."

Solution:
$f(-3): D N E$
(e) Solve $f(x)=-1$.

Solution:

$x=1$
(f) Find $(f \circ f)(1)$.

Solution:

$$
(f \circ f)(1)=f(f(1))=f(-1)=-2 .
$$

(g) f is not one-to-one. Briefly explain why this function is not one-to-one.

Solution:

The graph of f does not pass the horizontal line test. For example, $f(-2)=-2$ and $f(-1)=$ -2 but $-2 \neq-1$.
(h) Find the x-values where $f(x) \geq 0$. Give your answer in interval notation.

Solution:

$$
[2,4]
$$

(i) Find the net change of $f(x)$ from $x=0$ to $x=3$.

Solution:
$f(3)-f(0)=1-(-2)=\boxed{3}$
(j) Write down a piecewise-defined function that gives the same graph as $f(x)$.

Solution:

$$
f(x)=\left\{\begin{array}{lll}
-2 & \text { if } & -3<x \leq 0 \\
x-2 & \text { if } & 0<x<2 \\
1 & \text { if } & 2 \leq x \leq 4
\end{array}\right.
$$

2. The following are unrelated. (7 pts)
(a) Find the center and radius of the circle that has equation: $x^{2}+y^{2}-4 y=3$.

Solution:

$$
\begin{aligned}
x^{2}+y^{2}-4 y & =3 \\
x^{2}+y^{2}-4 y+4 & =3+4 \\
x^{2}+(y-2)^{2} & =7
\end{aligned}
$$

center: $(0,2)$, radius: $\sqrt{7}$
(b) Find the equation of the line that crosses through the points $(2,-3)$ and $(1,-1)$.

Solution:

The slope equation gives us $m=\frac{-1-(-3)}{1-2}=\frac{2}{-1}=-2$.
Using the slope-intercept equation, we get $y=-2 x+b$. To solve for b we substitute in either point given. We will use the point $(2,-3)$.

$$
\begin{align*}
y & =-2 x+b \tag{1}\\
-3 & =-2(2)+b \tag{2}\\
-3 & =-4+b \tag{3}\\
1 & =b \tag{4}
\end{align*}
$$

So we get the equation of the line $y=-2 x+1$.
3. Find the domain of the following functions. Express your answers in interval notation. (15 pts)
(a) $v(t)=16 t^{2}+64$

Solution:

There are no elements of the function that restrict the domain. So the domain is $(-\infty, \infty)$.
(b) $f(x)=\frac{\sqrt{x+2}}{x-4}$

Solution:

Since the square root of a negative number does not exist in the real numbers, then $x \geq-2$. However, $x-4$ in the denominator cannot be zero, so $x \neq 4$. Thus the domain is $[-2,4) \cup(4, \infty)$.
(c) $g(x)=\frac{x}{x^{2}-7 x+12}$

Solution:

Since the denominator cannot be zero, $x^{2}-7 x+12 \neq 0 \Longrightarrow(x-3)(x-4) \neq 0$
$\Longrightarrow x \neq 3, x \neq 4$. Thus the domain is $(-\infty, 3) \cup(3,4) \cup(4, \infty)$.
4. For $f(x)=2 x^{2}-4$ compute the following for real number constant a and nonzero constant h : (6 pts)
(a) $f(a)$

Solution:
$2 a^{2}-4$
(b) $f(a+h)$

Solution:

$$
\begin{align*}
f(a+h) & =2(a+h)^{2}-4 \tag{5}\\
& =2 a^{2}+4 a h+2 h^{2}-4 \tag{6}
\end{align*}
$$

(c) $\frac{f(a+h)-f(a)}{h}$

Solution:

$$
\begin{align*}
\frac{f(a+h)-f(a)}{h} & =\frac{2(a+h)^{2}-4-\left(2 a^{2}-4\right)}{h} \tag{7}\\
& =\frac{2 a^{2}+4 a h+2 h^{2}-4-2 a^{2}+4}{h} \tag{8}\\
& =\frac{4 a h+2 h^{2}}{h} \tag{9}\\
& =\frac{h(4 a+2 h)}{h} \tag{10}\\
& =4 a+2 h \tag{11}
\end{align*}
$$

5. For $k(x)=\frac{1}{\sqrt{x}}$ and $j(x)=x^{2}+4$, find the following: (5 pts)
(a) Find $f(x)=(j \circ k)(x)$.

Solution:

$$
\begin{align*}
(j \circ k)(x) & =j(k(x)) \tag{12}\\
& =j\left(\frac{1}{\sqrt{x}}\right) \tag{13}\\
& =\left(\frac{1}{\sqrt{x}}\right)^{2}+4 \tag{14}\\
& =\frac{1}{x}+4 \tag{15}
\end{align*}
$$

(b) Find the domain of $f(x)$.

Solution:

The domain of $f(x)$ must consider both $\frac{1}{\sqrt{x}}$ from line number 13 above and the final expression $\frac{1}{x}+4$. Thus, the domain of $f(x)$ is $(0, \infty)$.
6. Answer the following for the one-to-one function $h(x)$ whose graph is given below with domain $[0,2]$. (6 pts)

(a) On the graph to the right, graph the line $y=x$.

Solution:

(b) On the same graph sketch the graph of $h^{-1}(x)$ (label at least two points on the graph of $h^{-1}(x)$).

Solution:

See above graph.
(c) What is the range of $h^{-1}(x)$ in interval notation?

Solution:

The range of $h^{-1}(x)$ is the domain of $h(x)$ which is given in the statement of the problem. So the range of $h^{-1}(x)$ is [0,2].
7. Sketch the shape of the graph of each of the following on the provided axes. Make sure to label relevant value(s) on your axe(s) (19 pts)
(a) $f(x)=-\frac{1}{2} x+1$

Solution:

(b) $k(x)=(x-1)^{3}$

Solution:

(c) $(x-2)^{2}+(y+1)^{2}=4$

Solution:

(d) $g(x)=\sqrt[3]{x}+2$

Solution:

(e) $m(x)=-|x|$

Solution:

(f) $q(x)=\left\{\begin{array}{lll}1 & \text { if } & x<1 \\ x^{2}-1 & \text { if } & x \geq 1\end{array}\right.$

Solution:

8. For $P(x)=-x^{4}-5 x^{3}-4 x^{2}$ answer the following. (7 pts)
(a) Indicate on a graph or use arrow notation to indicate the end behavior of $P(x)$.

Solution:

For end behavior: $P(x) \approx-x^{4} \rightarrow-\infty$ as $x \rightarrow \infty$ and $P(x) \approx-x^{4} \rightarrow-\infty$ as $x \rightarrow-\infty$.
(b) Find the y-intercept of $P(x)$.

Solution:

The y-intercept is found by setting $x=0$. So $P(0)=-4\left(0^{4}\right)-5\left(0^{3}\right)-4\left(0^{2}\right)=0$. So the y-intercept is $(0,0)$.
(c) Find all zeros and identify the multiplicity of each zero.

Solution:

The zeros of a polynomial are the x-values that result in $P(x)=0$. So we set $-x^{4}-5 x^{3}-4 x^{2}=0$. By factoring:

$$
\begin{align*}
-x^{4}-5 x^{3}-4 x^{2} & =0 \tag{16}\\
-x^{2}\left(x^{2}+5 x+4\right) & =0 \tag{17}\\
-x^{2}(x+1)(x+4) & =0 \tag{18}
\end{align*}
$$

So we get $x=0$ and $x=-1$ and $x=-4$ as the zeros. The multiplicity of $x=0$ is 2 and $x=-1$ is 1 and $x=-4$ is 1 .
9. Sketch the shape of the graph of a polynomial function, $g(x)$, that satisfies all of the information. Label all intercepts on the graph. (5 pts)
i. The graph has y-intercept $(0,2)$.
ii. The graph has end behavior consistent with $y=2 x^{5}$.
iii. The graph crosses at $(-2,0)$ and bounces (touches but does not cross) at $(1,0)$ and $(2,0)$.
iv. The graph has no other x-intercepts.

Solution:

10. Use long division to find the quotient and remainder when $2 x^{3}+3 x^{2}-6 x+2$ is divided by $x^{2}-3$. (5 pts)

Solution:

$$
\begin{array}{r}
\frac{2 x+3}{x ^ { 2 } - 3 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } - 6 x + 2 }} \\
-\frac{\left(2 x^{3}-6 x\right)}{3 x^{2}}+2 \\
-\frac{\left(3 x^{2}-9\right)}{11}
\end{array}
$$

So the quotient is $2 x+3$ and the remainder is 11 .
11. The following are unrelated. (6 pts)
(a) Is $f(x)=x^{6}-|x|+1$ odd, even, or neither? Justify your answer to earn credit.

Solution:

Replacing x by $-x$ and using the fact that $(-x)^{6}=x^{6}$ and $|-x|=|x|$ we get:

$$
\begin{align*}
f(-x)= & =(-x)^{6}-|-x|+1 \tag{19}\\
& =x^{6}-|x|+1 \tag{20}\\
& =f(x) \tag{21}
\end{align*}
$$

Since $f(-x)=f(x)$ then $f(x)$ is even.
(b) Is the graph below that of an odd function, even function, or neither?

Solution:

The graph is symmetric about the origin and is thus odd.
12. (a) Plot the points $C(4,1)$ and $D(4,3)$ on the graph below. (7 pts)

Solution:

(b) Find the distance between points C and D.

Solution:

The distance between the two points can be found using the distance formula: $d=\sqrt{(4-4)^{2}+(3-1)^{2}}=$ 2 .

Note that this is the same as simply subtracting the smaller y-coordinate from the larger y-coordinate: $3-1=2$.
(c) Two flies, Fly A and Fly B, are crawling along a wall in such a way that Fly A is always directly above Fly B (See picture). Fly A is crawling along the path $f(x)=-x^{2}+\frac{11}{2} x-3$ and fly B is crawling along path $g(x)=x-3$. Find the maximal distance, d, between the two flies on the interval of x-values: $[0,4.5]$. As always, show all work in justifying your answer.

Solution:

The vertical distance between the two flies can be found by subtracting the smaller y-coordinate from the larger y-coordinate. Letting d represent the distance between the two flies we get:

$$
\begin{align*}
d & =-x^{2}+\frac{11}{2} x-3-(x-3) \tag{22}\\
& =-x^{2}+\frac{9}{2} x \tag{23}
\end{align*}
$$

The x-coordinate, where the maximum distance is located, can be found by using the vertex formula $h=\frac{-b}{2 a}$ where $a=-1$ and $b=\frac{9}{2}$. Thus $h=\frac{-\left(\frac{9}{2}\right)}{2(-1)}=\frac{9}{4}$. The maximum distance is found by plugging in $h: d=-\left(\frac{9}{4}\right)^{2}+\frac{9}{2}\left(\frac{9}{4}\right)=-\frac{81}{16}+\frac{81}{8}=\frac{81}{16}$.

