1. The following are unrelated: (18 pts)
(a) Rewrite each of the following without the absolute value symbol:
i. $|\pi-3|$

Solution:

Since $\pi>3, \pi-3>0$ so $|\pi-3|=\pi-3$
ii. $|x-2|$ where $x<2$

Solution:

Since $x<2, x-2<0$ and therefor $|x-2|=-(x-2)$ or $2-x$
(b) Divide/Add as indicated: $-\frac{\frac{6}{5}}{\frac{8}{3}}+10^{-1}$

Solution:

$$
\begin{align*}
-\frac{\frac{6}{5}}{\frac{8}{3}}+10^{-1} & =-\left(\frac{3}{8}\right)\left(\frac{6}{5}\right)+\frac{1}{10} \tag{1}\\
& =-\frac{9}{20}+\frac{2}{20} \tag{2}\\
& =-\frac{7}{20} \tag{3}
\end{align*}
$$

(c) Let x, y, and z be real numbers such that $x>3, y<0$, and $1 \leq z \leq 3$. Answer the following:
i. Is $x^{7} y^{24}$ positive, negative, or cannot be determined? No work is needed to justify your answer.

Solution:

> Positive
ii. Is $z-2+y$ positive, negative, or cannot be determined? No work is needed to justify your answer.

Solution:

Cannot be determined

iii. Is $-z^{4} y^{3}$ positive, negative, or cannot be determined? No work is needed to justify your answer.

Solution:

Positive
(d) Perform the multiplication and subtraction and simplify: $(x-2)^{2}-3\left(x^{2}+4\right)$.

Solution: $=-2 x^{2}-4 x-8=(-2)\left(x^{2}+2 x+4\right)$

$$
\begin{align*}
(x-2)^{2}-3\left(x^{2}+4\right) & =x^{2}-4 x+4-\left(3 x^{2}+12\right) \tag{4}\\
& =-2 x^{2}-4 x-8 \tag{5}
\end{align*}
$$

2. The following are unrelated: (24 pts)
(a) Simplify the expression: $\sqrt{45}$

Solution:

$$
\begin{align*}
\sqrt{45} & =\sqrt{3^{2} \cdot 5} \tag{6}\\
& =3 \sqrt{5} \tag{7}
\end{align*}
$$

(b) Simplify the expression: $\sqrt{2 \sqrt{16}}$

Solution:

$$
\begin{align*}
\sqrt{2 \sqrt{16}} & =\sqrt{2 \sqrt{2^{4}}} \tag{8}\\
& =\sqrt{2 \cdot 2^{2}} \tag{9}\\
& =2 \sqrt{2} \tag{10}
\end{align*}
$$

(c) Rewrite with positive exponents and simplify: $\left(x^{2}+1\right)^{-1}\left(x^{2}+1\right)^{-4}$

Solution:

$$
\begin{align*}
\left(x^{2}+1\right)^{-1}\left(x^{2}+1\right)^{-4} & =\frac{1}{\left(x^{2}+1\right)} \cdot \frac{1}{\left(x^{2}+1\right)^{4}} \tag{11}\\
& =\frac{1}{\left(x^{2}+1\right)^{5}} \tag{12}
\end{align*}
$$

(d) Simplify (Give your answer without negative exponents): $\left(-3 b^{5}\right)\left(2 c^{5} b^{2} a^{-3}\right)^{2}$

Solution:

$$
\begin{align*}
\left(-3 b^{5}\right)\left(2 c^{5} b^{2} a^{-3}\right)^{2} & =-3 b^{5}\left(2^{2} c^{10} b^{4} a^{-6}\right) \tag{13}\\
& =-\frac{12 b^{9} c^{10}}{a^{6}} \tag{14}
\end{align*}
$$

(e) Multiply: $(\sqrt{x-4}-2)^{2}$

Solution:

$$
\begin{align*}
(\sqrt{x-4}-2)^{2} & =(\sqrt{x-4}-2)(\sqrt{x-4}-2) \tag{15}\\
& =(x-4)+\sqrt{x-4}(-2)+(-2) \sqrt{x-4}+(-2)^{2} \tag{16}\\
& =(x-4)-4 \sqrt{x-4}+4 \tag{17}\\
& =x-4 \sqrt{x-4} \tag{18}
\end{align*}
$$

(f) Multiply: $x^{8}\left(x^{1 / 2}-\frac{3}{x^{4}}\right)$

Solution:

$$
\begin{align*}
x^{8}\left(x^{1 / 2}-\frac{3}{x^{4}}\right) & =x^{8} x^{1 / 2}-\frac{3 x^{8}}{x^{4}} \tag{19}\\
& =x^{17 / 2}-3 x^{4} \tag{20}
\end{align*}
$$

3. The following are unrelated: (18 pts)
(a) Evaluate $18(-x)^{3}$ for $x=-\frac{1}{3}$

Solution:

$$
\begin{align*}
18\left(-\left(-\frac{1}{3}\right)\right)^{3} & =18\left(\frac{1}{3}\right)^{3} \tag{21}\\
& =18 \cdot \frac{1}{27} \tag{22}\\
& =\frac{2}{3} \tag{23}
\end{align*}
$$

(b) Factor completely (If not factorable write NF): $8 x^{3}+1$

Solution:

$8 x^{3}+1$ can be factored as a sum of two cubes, using the formula provided on exam 1:
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$. Letting $a=2 x$ and $b=1$:

$$
\begin{align*}
8 x^{3}+1 & =(x+1)\left((2 x)^{2}-2 x+1\right) \tag{24}\\
& =(x+1)\left(4 x^{2}-2 x+1\right) \tag{25}
\end{align*}
$$

Note that $4 x^{2}-2 x+1$ does not factor any further.
(c) Multiply: $\frac{x^{2}-16}{x^{2}-5 x+6} \cdot \frac{x^{3}-2 x^{2}}{3 x-12}$

Solution:

We start by writing under one fraction bar and factoring to see if anything cancels:

$$
\begin{align*}
\frac{x^{2}-16}{x^{2}-5 x+6} \cdot \frac{x^{3}-2 x^{2}}{3 x-12} & =\frac{\left(x^{2}-16\right)\left(x^{3}-2 x^{2}\right)}{\left(x^{2}-5 x+6\right)(3 x-12)} \tag{26}\\
& =\frac{(x-4)(x+4) x^{2}(x-2)}{(x-3)(x-2) 3(x-4)} \tag{27}\\
& =\frac{(x+4) x^{2}}{(x-3) 3} \tag{28}
\end{align*}
$$

(d) Simplify the compound fraction: $\frac{\frac{5}{x^{2}}-\frac{1}{x}}{1-\frac{25}{x^{2}}}$

Solution:
We start by getting a single fraction in the numerator and denominator we we carry out the division:

$$
\begin{align*}
\frac{\frac{5}{x^{2}}-\frac{1}{x}}{1-\frac{25}{x^{2}}} & =\frac{\frac{5}{x^{2}}-\frac{x}{x^{2}}}{\frac{x^{2}}{x^{2}-\frac{25}{x^{2}}}} \tag{29}\\
& =\frac{\frac{5-x}{x^{2}}}{\frac{x^{2}-25}{x^{2}}} \tag{30}\\
& =\frac{5-x}{x^{2}} \cdot \frac{x^{2}}{x^{2}-25} \tag{31}\\
& =-\frac{x-5}{x^{2}-25} \tag{32}\\
& =-\frac{x-5}{(x-5)(x+5)} \tag{33}\\
& =-\frac{1}{x+5} \tag{34}
\end{align*}
$$

4. Solve the following equation over the complex numbers: $z^{2}-4 z+5=0$. (4 pts)

Solution:

We start by trying to factor the left hand side. Unfortunately, the left hand side does not factor easily, so we utilize the quadratic formula.

$$
\begin{align*}
z & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(5)}}{2(1)} \tag{35}\\
& =\frac{4 \pm \sqrt{-4}}{2} \tag{36}\\
& =\frac{4 \pm 2 i}{2} \tag{37}\\
& =\frac{2(2 \pm i)}{2} \tag{38}\\
& =2 \pm i \tag{39}
\end{align*}
$$

5. Solve each of the following equations: (12 pts)
(a) $\frac{1}{3} x-\frac{5}{6}=\frac{1}{2} x-1$

Solution:

We start by clearing the fractions by multiplying both sides of the equation by 6 .

$$
\begin{align*}
\frac{1}{3} x-\frac{5}{6} & =\frac{1}{2} x-1 \tag{40}\\
6\left(\frac{1}{3} x-\frac{5}{6}\right) & =6\left(\frac{1}{2} x-1\right) \tag{41}\\
6\left(\frac{1}{3} x\right)-6\left(\frac{5}{6}\right) & =6\left(\frac{1}{2} x\right)-6(1) \tag{42}\\
2 x-5 & =3 x-6 \tag{43}\\
1 & =x \tag{44}\\
x & =1 \tag{45}
\end{align*}
$$

(b) $x^{3}-18 x=17 x^{2}$

Solution:

We start by moving all terms to one side and then factoring.

$$
\begin{align*}
x^{3}-18 x & =17 x^{2} \tag{46}\\
x^{3}-17 x^{2}-18 x & =0 \tag{47}\\
x(x-18)(x+1) & =0 \tag{48}
\end{align*}
$$

By the multiplicative property of zero, we set $x=0, x-18=0$ and $x+1=0$ resulting in solutions $x=0, x=18$, and $x=-1$.
(c) $\sqrt{3 x+3}-2=x-1$

We start by isolating the square root so we can square both sides. We then can solve the equation by factoring.

$$
\begin{align*}
\sqrt{3 x+3}-2 & =x-1 \tag{49}\\
\sqrt{3 x+3} & =x+1 \tag{50}\\
3 x+3 & =(x+1)^{2} \tag{51}\\
3 x+3 & =x^{2}+2 x+1 \tag{52}\\
0 & =x^{2}-x-2 \tag{53}\\
0 & =(x-2)(x+1) \tag{54}
\end{align*}
$$

This results in two potential solutions: $x=2$ and $x=-1$. We must check both values:
Checking $x=2$ we get $\sqrt{3(2)+3}-2=(2)-1 \Longrightarrow \sqrt{9}-2=1 \Longrightarrow 3-2=1$ which is a solution.

Checking $x=-1$ we get $\sqrt{3(-1)+3}-2=(-1)-1 \Longrightarrow \sqrt{0}-2=-2 \Longrightarrow-2=-2$ which is also a solution.

So the solution is: $x=2$ and $x=-1$.
6. Solve each of the following equations: (12 pts)
(a) Solve for $m: T=m g+m a$

Solution:

The goal is to get m by itself on one side of the equation.

$$
\begin{align*}
T & =m g+m a \tag{55}\\
T & =m(g+a) \tag{56}\\
\frac{T}{g+a} & =m \tag{57}
\end{align*}
$$

So the answer is $m=\frac{T}{g+a}$
(b) $-\frac{1}{x^{2}-x}-\frac{2}{x^{2}-1}=\frac{2}{x^{2}+x}$

Solution:

We start by factoring each denominator to find the lowest common denominator and then we multiply each side of the equation by the lowest common denominator found.

$$
\begin{align*}
-\frac{1}{x^{2}-x}-\frac{2}{x^{2}-1} & =\frac{2}{x^{2}+x} \tag{58}\\
-\frac{1}{x(x-1)}-\frac{2}{(x-1)(x+1)} & =\frac{2}{x(x+1)} \tag{59}\\
x(x-1)(x+1) \cdot\left(-\frac{1}{x(x-1)}-\frac{2}{(x-1)(x+1)}\right) & =x(x-1)(x+1) \cdot\left(\frac{2}{x(x+1)}\right) \tag{60}\\
-(x+1)-2 x & =2(x-1) \tag{61}\\
-x-1-2 x & =2 x-2 \tag{62}\\
1 & =5 x \tag{63}\\
\frac{1}{5} & =x \tag{64}
\end{align*}
$$

Resulting in one potential solution: $x=\frac{1}{5}$. Plugging in $x=\frac{1}{5}$, we see that it is in fact a solution. (c) $|x+2|=5$

Solution:

The x-values that solve $|x+2|=5$ are found when we set $x+2=5$ and $x+2=-5$. This results in two solutions: $x=3$ and $x=-7$.
7. Solve the following inequalities. Justify your answers by using a number line or sign chart if needed. Answers without full justification will not receive full credit. Express all answers in interval notation. (8 pts)
(a) $2 x^{2}-4 x<6$

Solution:

We start by adding 6 to both sides to get a zero on the right side and then we factor.

$$
\begin{align*}
2 x^{2}-4 x & <6 \tag{65}\\
2 x^{2}-4 x-6 & <0 \tag{66}\\
2\left(x^{2}-2 x-3\right) & <0 \tag{67}\\
2(x-3)(x+1) & <0 \tag{68}
\end{align*}
$$

Setting the left side equal to zero we get two values that make the left side zero: $x=-1$ and $x=3$.
Placing these on a number line and picking test values we get

and the solution $(-1,3)$.
(b) $\frac{-2}{x-3} \geq 0$

Solution:

We start by noting that the sign of the left side can only change when $x-3=0$ or when $x=3$.
Placing this value on a number line and picking test values we get

and the solution $(-\infty, 3)$. NOTE: We do not include 3 in the answer because this value does not solve the inequality.
8. Suppose you know that a is a real number and that $\left(a-\frac{1}{2} i\right)\left(a+\frac{1}{2} i\right)=3$. Find all possible value(s) of a that make this equality true. (4 pts)

Solution:

We start by multiplying out the left side and then we can solve for a :

$$
\begin{align*}
\left(a-\frac{1}{2} i\right)\left(a+\frac{1}{2} i\right) & =3 \tag{69}\\
a^{2}+\frac{1}{2} a i-\frac{1}{2} a i-\frac{1}{4} i^{2} & =3 \tag{70}\\
a^{2}-\frac{1}{4}(-1) & =3 \tag{71}\\
a^{2}+\frac{1}{4} & =3 \tag{72}\\
a^{2} & =3-\frac{1}{4} \tag{73}\\
a^{2} & =\frac{12}{4}-\frac{1}{4} \tag{74}\\
a^{2} & =\frac{11}{4} \tag{75}\\
a & = \pm \sqrt{\frac{11}{4}} \tag{76}\\
a & = \pm \frac{\sqrt{11}}{2} \tag{77}
\end{align*}
$$

