INSTRUCTIONS: Books, notes, and electronic devices are not permitted. The exam is worth 100 points. Simplify and box all your answers. Write neatly and show all work. A correct answer with incorrect or no supporting work may receive no credit.

Name:______________________________ Instructor:__________________________

1. (28 pts)
 (a) Multiply and simplify completely: \((x^2 + 1)^2\)

 Solution:
 \[
 (x^2 + 1)^2 = (x^2 + 1)(x^2 + 1) = x^4 + x^2 + x^2 + 1 = x^4 + 2x^2 + 1
 \]

 (b) Simplify to write as a polynomial: \((6u - 3)(u + 1) - 2u(u + 3)\)

 Solution:
 \[
 (6u - 3)(u + 1) - 2u(u + 3) = 6u^2 + 6u - 3u - 3 - 2u^2 - 6u = 4u^2 - 3u - 3
 \]

 (c) Simplify completely: \(\sqrt[3]{27x^4y^3}\)

 Solution:
 \[
 \sqrt[3]{27x^4y^3} = 3xy\sqrt[3]{x}
 \]

 (d) Factor completely: \(2x^2 - 9x + 10\)

 Solution:
 \[
 2x^2 - 9x + 10 = 2x^2 - 4x - 5x + 10 = 2x(x - 2) - 5(x - 2) = (x - 2)(2x - 5)
 \]

 (e) Simplify: \(\frac{x^{-3}y^2z^{1/2}}{z^{-1/2}}\)

 Solution:
 \[
 \frac{x^{-3}y^2z^{1/2}}{z^{-1/2}} = \frac{y^2z^{1/2}z^{1/2}}{x^3} = \frac{y^2z^{(1/2+1/2)}}{x^3} = \frac{y^2z}{x^3}
 \]
(f) Combine into a single fraction: \[\frac{1}{2x} + \frac{2}{3x^2} \]

Solution:

\[
\frac{1}{2x} + \frac{2}{3x^2} = \frac{3x}{6x^2} + \frac{4}{6x^2} = \frac{3x + 4}{6x^2}
\]

(g) Simplify the expression: \[\frac{1 + \frac{2}{x^2}}{\frac{4}{x} + 3} \]

Solution:

\[
\frac{1 + \frac{2}{x^2}}{\frac{4}{x} + 3} = \frac{\frac{x^2 + 2}{x^2} + \frac{2}{x}}{\frac{4 + 3x}{x}} = \frac{x^2 + 2}{4 + 3x} \cdot \frac{x}{x^2} = \frac{x^2 + 2}{x(4 + 3x)}
\]

2. Solve the following equations: (25 pts)

(a) \[x^{3/2} = 64 \]

Solution:

\[
x^{3/2} = 64 \quad (1)
\]
\[
x = 64^{2/3} \quad (2)
\]
\[
x = 4^2 \quad (3)
\]
\[
x = 16 \quad (4)
\]

(b) \[-3 + x + \sqrt{x + 3} = 0 \]

Solution:

\[
-3 + x + \sqrt{x + 3} = 0 \quad (5)
\]
\[
\sqrt{x + 3} = 3 - x \quad (6)
\]
\[
x + 3 = (3 - x)^2 \quad (7)
\]
\[
x + 3 = 9 - 6x + x^2 \quad (8)
\]
\[
x^2 - 7x + 6 = 0 \quad (9)
\]
\[
(x - 6)(x - 1) = 0 \quad (10)
\]

So \(x = 1, 6 \) are possible solutions. Checking these solutions in the original equation we see that \(x = 1 \) is the only solution.
(c) \(x^2 - 4x - 2 = 0\)

Solution:

\[
x^2 - 4x - 2 = 0 \tag{11}
\]

\[
x = \frac{-(\pm 4) \pm \sqrt{(-4)^2 - 4(1)(-2)}}{2(1)} \tag{12}
\]

\[
x = \frac{4 \pm \sqrt{16 + 8}}{2} \tag{13}
\]

\[
x = \frac{4 \pm \sqrt{24}}{2} \tag{14}
\]

\[
x = \frac{2(2 \pm \sqrt{6})}{2} \tag{15}
\]

\[
x = 2 \pm \sqrt{6} \tag{16}
\]

(d) \(|x - 1| = 2\)

Solution:

\[
|x - 1| = 2 \tag{17}
\]

\[
\Rightarrow x - 1 = 2 \text{ and } x - 1 = -2 \tag{18}
\]

\[
\Rightarrow x = 3 \text{ and } x = -1 \tag{19}
\]

(e) Solve for \(r\): \(4r = \frac{t^2}{r}\)

Solution:

\[
4r = \frac{t^2}{r} \tag{20}
\]

\[
4r^2 = t^2 \tag{21}
\]

\[
r^2 = \frac{t^2}{4} \tag{22}
\]

\[
r = \pm \sqrt{\frac{t^2}{4}} \tag{23}
\]

\[
r = \pm \frac{|t|}{2} \text{ or } r = \pm \frac{t}{2} \tag{24}
\]
3. (12 pts)

(a) Plot the two points: \(A(2, 3), B(-3, -2)\) on a graph. Label points and tick marks on graph.

Solution:

(b) Find the distance between the two points.

Solution:

\[
d = \sqrt{(-3 - 2)^2 + (-2 - 3)^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}
\]

(c) Find the midpoint between the two points.

Solution:

\[
\left(\frac{-3 + 2}{2}, \frac{-2 + 3}{2}\right) = \left(-\frac{1}{2}, \frac{1}{2}\right)
\]

4. Find the domain of the following functions. Give all answers in interval notation. (15 pts)

(a) \(f(x) = \sqrt{x^2 - 3x - 10}\)

Solution:

\[
x^2 - 3x - 10 \geq 0 \\
(x - 5)(x + 2) \geq 0
\]

Note that \((x - 5)(x + 2) = 0\) when \(x = -2, 5\). By testing points we get the domain of:
\((-\infty, -2] \cup [5, \infty)\).
(b) \(h(x) = \sqrt[3]{1 - x} \)

Solution:

Since for any \(x \)-value, \(\sqrt[3]{1 - x} \) computes a real number, then the domain is: \((−∞, ∞)\).

(c) \(g(x) = \frac{x - 4}{x^2 - 16} \)

Solution:

\(x^2 - 16 = 0 \) when \(x = ±4 \) so the domain is: \((−∞, −4) \cup (−4, 4) \cup (4, ∞)\).

5. Consider the graph of the function \(f \) and answer the questions below. When appropriate give answers in interval notation. (10 pts)

(a) What is the domain of \(f \)?

Solution:

The domain is: \([-3, 4]\).

(b) What is the range of \(f \)?

Solution:

The range is: \([-2, 2]\).

(c) Find \(f(1) \)

Solution:

\(f(1) = 0 \).

(d) All \(x \) such that \(f(x) = 1 \).

Solution:

\(f(x) = 1 \) when \(x = −1, \frac{1}{2}, 2 \).

(e) All \(x \) such that \(f(x) \leq 1 \).

Solution:

The range is: \([-3, −1] \cup \left[\frac{1}{2}, 2 \right] \).
6. Find an equation of a circle that satisfies center \(C \left(\frac{-1}{2}, 2 \right) \) and radius \(r = 3\sqrt{2} \). (5 pts)

Solution:

\[
\left(x - \left(\frac{-1}{2} \right) \right)^2 + (y - 2)^2 = (3\sqrt{2})^2 \text{ and the simplified form is } \left(x + \frac{1}{2} \right)^2 + (y - 2)^2 = 18
\]

7. Sketch the graph of: \(y = \sqrt{9 - x^2} \). Make sure to label tick marks on the axes. (5 pts)

Solution:

![Graph of \(y = \sqrt{9 - x^2} \)]

Potentially useful equations:

(i) \(a^3 - b^3 = (a - b)(a^2 + ab + b^2) \)

(ii) \(a^3 + b^3 = (a + b)(a^2 - ab + b^2) \)

(iii) Difference quotient of \(f(x) \): \(\frac{f(x + h) - f(x)}{h} \)