1. (20 points) Short Answer. Show all Work.

(a) Evaluate the following:

i. \(\sin(270^\circ) \)

ii. \(\cos\left(\frac{3\pi}{4}\right) \)

iii. \(\tan\left(-\frac{2\pi}{3}\right) \)

iv. Evaluate the expression \(4(\sin(30^\circ))^2 + 4(\cos(30^\circ))^2 \)

2. (14 points) A cyclist is riding a bicycle whose wheels have a diameter of 24 inches. Suppose the wheels turn at a rate of 30 revolutions per minute. Find the speed of the cyclist in feet per minute.
3. (20 points) The temperature of a car engine after it is turned off is modeled by the equation

\[\log \left(\frac{F - 20}{200} \right) = -0.4t \]

where \(F \) is the temperature in degrees Fahrenheit and \(t \) is the time in minutes after the engine is turned off. Give your answers with the correct units.

(a) At what time \(t \) does the temperature of the engine reach 40\(^\circ\)F?

(b) What is the temperature of the engine when it is turned off?

(c) Solve the given equation for \(F \) to obtain an equation for \(F \) in terms of time \(t \).

(d) What temperature does the engine approach as \(t \to \infty \)?
4. (14 points) Given \(f(x) = \frac{x - 1}{5 - x} \),

(a) Find \(f^{-1}(-3) \).

(b) Find the range of \(f^{-1} \).

5. (12 points) Solve the following for \(x \): \(e^x + 2 = 8e^{-x} \)

6. (20 points) Answer the following questions as either TRUE or FALSE. For this problem only, you do not need to justify your answer.

(a) \(\log \left(\frac{x}{y} \right) = \frac{\log x}{\log y} \) \hspace{1cm} TRUE / FALSE

(b) \(-\ln A = \ln \left(\frac{1}{A} \right) \) for \(A \neq 0 \) \hspace{1cm} TRUE / FALSE

(c) The domain of \(f(x) = \ln x + \ln(8 - x) \) is \((0, 8)\) \hspace{1cm} TRUE / FALSE

(d) \(\frac{1}{\sec^2 x} = 1 - \sin^2 x \) \hspace{1cm} TRUE / FALSE