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Abstract 

Renormahzauon theory provides a description of the destruction of mvanant ton for Hamiltoman systems of 1½ or 2 degrees 
of freedom, and explains the self-similarity and the universahty of the structures observed A similar theory for higher dimen- 
sional Hamlltonian systems has proved elusive Here we construct an approximate renormahzation for a Hamiltonlan system 
with 2½ degrees of freedom analogous to the lower dimensional version of Escande and Doveil. Using this operator we study the 
cntlcal surface for the "spiral mean" invanant torus We find that there IS no universal fixed point Instead the renormahzation 
dynamics on the critical surface is a rotation with irrational winding ratio. Implications for the determination of the exact critical 
surface are discussed. 

1. Introduction 

The Ko lmogorov -Am ol ' d -Mose r  (KAM) theo- 
rem ~mplies that sufficiently incommensurate  mvar- 
iant toil o f  integrable Hamil tonian systems or sym- 
plectic maps are preserved for small enough 
perturbations. Alternatively, in many such systems 
one can use "converse-KAM" theory to show that for 
certain parameter  and frequency ranges there will be 
no invariant t on  continuously deformable to those o f  
the integrable case [ 1-4 ]. The set o f  parameters for 
which there exists an invariant torus o f  a g0ven Dio- 
phantme frequency with smooth conjugacy to rota- 
tion and the set for which there does not exist any 
invariant torus o f  that frequency are both open. The 
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destruction ofmvar iant  ton  signals the onset o f  chaos, 
and (particularly for two degrees of  freedom) the loss 
o f  stability. Thus it is o f  great interest to develop 
techniques for studying this destruction. 

In 1979 Greene [5 ] made the remarkable discov- 
ery in embryonic form that the phase space o f  an area 
preserwng map exh~bxts self-similarity in the neigh- 
borhood of  a critical invanant  circle with golden mean 
winding ratio. This observation led to the construc- 
t ion o f  renormal~zaUon operator on the space o f  area 
preserving maps [6,7 ]. This operator has also been 
extended to general winding ratios [ 8,9 ] 

There have been many unsuccessful attempts to 
find a similar self-similarity for the breakup of tor i  in 
higher &mensions [10-15] .  In these cases the au- 
thors studied three frequency systems: etther maps o f  
the toms, volume preserving maps, or four dimen- 
sional symplecuc maps. 

In order to &scover the reason for this failure, we 
will construct an analytic approximation to the re- 
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normahzat~on operator for 2½ degrees o f  freedom. 
Our construcUon Is analogous to that of  Escande and 
Doved [ 16,17 ] who considered the case o f  1½ de- 
grees o f  freedom. Their approximate renormalxza- 
tlon provides a simple model that has many of  the 
features o f  the exact renormahzat lon and yields, 
within a few percent, the mare elgenvalues near the 
crltxcal golden fixed point. It can also be used to dis- 
cuss such xssues as the robustness o f  ton  with d~ffer- 
ent rotation numbers  and the expected rotation num- 
bers for boundary ton  [ 18-20] - though ~t loses 
accuracy for frequencxes that have large continued 
fracuon elements. 

Escande and Dovefl studied a model correspond- 
mg to the motion of  a particle m one d~mens~on acted 
on by two waves with different wavenumbers (with- 
out loss of  generality 1 and k) and phase velocmes 
(without loss o f  generahty 0 and 1 ): 

H(p,  x, t) = ½p2+A cos (2nx) + B  cos [ 2 n k ( x - t )  ] 

This Hamil tonian has three parameters and is peri- 
odic of  period 1 m the configuraUon variables (x, 
y =  k ( x -  t) ). When A = B =  0 there Is a torus for each 
p with frequency vector co= (:~,)~). The renormali- 
zatlon ~s a map ~ ( A ,  B, k ) =  (A', B', k ' )  of  the pa- 
rameters gwlng a modified Hamll tonmn describing 
the system in new coordinates. These are essentmlly 
obtained by a shear m the configuraUon variables and 
a magmficauon of  the momentum.  The shear ~s ar- 
ranged so that the new configuration coordinates are 
more closely aligned with the frequency vector o f  the 
mvanan t  torus o f  interest. The shear is a ummodular  
transformation (to maintain p e n o d l o t y )  and it cor- 
responds to one step o f  the Farey expansion for 09 
The magnification focuses on a layer around the po- 
smon  o f  the torus. The simplest way to obtain such a 
map is to perform the canonical and rescaling trans- 
formations to lowest order m the amplitudes A and 
B, though one can be much more sophisUcated. The 
Hamll toman m the new coordinate system takes a 
form identical to the original one upon mapping the 
parameters. 

We will construct a s~mflar operator for a system of  
2½ degrees of  freedom. We also choose a Hamilto- 
man corresponding to a part,t ie in a time dependent 
potential. One important  new feature ~s the presence 
o f  a mass matrix in the kanetw energy, we will see that 
the off-dmgonal elements o f  this matrix are essential 

The second new feature is the use o f  the Klm-Os-  
tlund generahzatlon o f  the Farcy tree [ 21 ] to con- 
struct the shear transformation. 

We began by defining the model Hamdtoman.  

2. M o d e l  H a m i l t o n i a n  

A particle in the plane that is acted on by a poten- 
tial f rom three electrostatic waves has the 
Hamiltonian 

1 2 3 
H =  ~-mm p + ~ ~o, c o s ( k , . x - c o ,  t) 

t = l  

Providing that none of  the wavevectors k, are paral- 
lel, we can choose new canomcal coordinates (x, u) 
and (y, v) to transform H to the standard form 

H =  ~ (u, v) . + V(x,  ky, l z ) ,  
v 

V=A cos(2nx)  + B  cos(2rtky) + C cos(27dz) ,  

z = t - x - y .  (1) 

Without  loss o f  generality, the wavenumbers (k, l) 
can be taken to be posmve and the energy can be 
scaled so that the mass matrix has unit determinant, 
otT- f12 = 1. Thus we obtain a seven parameter system. 

It is useful to think of  the motion on the five di- 
mensional extended phase space with coordinates 
~= (x, y, z, u, v). The H a m d t o m a n  is periodic with 
periods ( l, 1/k, l / l )  m the configuration variables 
(x, y, z) - so the configuration space can be taken to 
be the three torus T 3 = {x mod  1, y mod 1/k, z mod 
l / l } .  Note that one could incorporate the factors k 
and l into the definitions of  y and z to make the pe- 
riods unity, but we did not do so. The frequency vec- 
tor co is the average direction that an orbit moves 
around the torus 

co= Atlmo ° 1 (Ax, kAy,  tAz)  

If  the limit exists. We care only about its dlrecUon 
(defined by two winding ratios), so co should be 
viewed as a point in the projective space RP 2. The 
frequency is commensurate if there is a nonzero in- 
teger vector m such that m co= 0. Such a relation is a 
resonance condition. I f  there are no resonances for co 
then it ~s incommensurate. I f  there are two lndepen- 
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dent resonances for to, then oJ=p where p is integral 
(remember the length of to is unimportant). A fre- 
quency to is Dzophantme if there is a K # 0  and z> 2 
such that V meZ3 \0 ,  Im tol/ltol > K / I m l  ~. 

When A=B=C =O,  the momenta (u, v) are con- 
stant in time and every orbit lies on a three toms. If  
to(u, v) is incommensurate, the orbit densely covers 
the toms. If  to is Dlophantlne, then the KAM theo- 
rem implies that there is a torus wtth this frequency 
for small values of the amplitudes. We are interested 
in determining the parameters for which such a torus 
is destroyed. 

The technique is to perform a succession of canon- 
real transformations to coordinates that are more 
closely aligned with the incommensurate flow. We use 
the Klm-Ostlund extension of the Farey algorithm to 
successively construct these coordinates. 

3.  K i m - O s t l u n d  tree  

Each of the three phases in V(x, y, z) corresponds 
to a resonance m,.to=0. We beg0n with the three res- 
onances ml = (1, 0, 0), m2= (0, 1, 0), m3= (0, 0, 1 ). 
Each resonance corresponds to a plane in R 3 or a line 
in Rp2; the set of three resonances delineates a cone 
(the positive octant) or triangle, see Fig. 1. The in- 

. . . . .  

Fig 1 Farey triangle construction Frequency ratios are denoted 
by [ ], and resonances by ( ) The frequency shown has the Farey 
sequence to = LL 

tersection of  each pair of resonances defines rational 
frequencies p l =  [1, 0, 0], p2= [0, 1, 0], p3= [0, 0, 
1] The frequencies p, also delineate the cone; it is the 
convex hull of the three vectors. We denote the cone 
by either of the matrices (m / 
M =  m2 , P=(P~,P2,P3) .  

kin3 / 

We assume to is inside the cone, i.e. co, >i 0. 
To construct the Farey sequence for to, divide the 

cone using the new frequency P'=Pl +P2, and corre- 
sponding resonance m ' = m ~ - m 2 .  There is now a 
nght and a left cone PR = (P3, Pl, P'  ) and PL = (P2, P3, 
p ' ) ,  OrMR= (m3, m', m2) t and ML= ( - -m' ,  m3, ml )t. 
Choose the new cone that contains ~0 and repeat this 
transformaUon, dividing this new cone into two. This 
gtves a sequence of cones that each contain to. The 
operations can be represented by the linear 
transformatmns 

M s - - S - I M ,  P s = P S ,  

S = R  i f ( m r - m 2 )  t o > 0 ,  

= L  if (ml -m2) ' to~<0,  

R =  0 , L =  0 (2) 
0 1 

Note that d e t ( R ) = d e t ( L ) = l ,  MsPs=I, and 
det(Ms) =det (Ps)  = 1. Repeating this transforma- 
tion provides a unique stnng of matrices S,e {R, L} 
for any to, so that we can think of to as the sequence 
$1S2S3 .... It is not difficult to show that if to is an in- 
teger vector (with no common factors) then this se- 
quence eventually terminates when P3 = to [22 ]. 

From the Farey point of view, the simplest incom- 
mensurate frequency vectors have penochc Farey se- 
quences. When the period ~s q, to is the elgenvector 
with the largest elgenvalue of  the nonnegatlve matrix 
SI...Sa. This implies that the components of  to are ele- 
ments of  a cubic field: they sausfy (.o,=l+j~+k~ 2, 
where 0,J,  k) are integers and A is the eigenvalue - it 
satisfies a cubic equation wath integer coefficients. 
The simplest of these is the spiral mean, which is the 
elgenvector of  L: 

to=(1,  e2, e), e 3 = e + l ,  e~1.324717957. (3) 
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v 

Similarly the elgenvector of R is (0 "2, 1, 0-) 
For the model (1) with A=B=C=O, the fre- 

quency vector for momenta (u, v) is 

o9= (au+ flv, k(pu+ ~,v), 

l[1 - ( a + # ) u -  (//+ y) v] ) ,  

and each resonance m, o9=0 corresponds to a hne m 
momentum space, as shown m Fig 2. Ton w~th ra- 
tional frequency ratio, hence consisting entirely of 
periodic orbits, occur at the antersectmns of the res- 
onance lines. 

4. Renormalization transformation 

Our renormahzatlon is a coordinate transforma- 
tion that focuses in on a regmn of phase space in which 
orbits of a given frequency ratio are expected. Here 
we will define two such transformations correspond- 
lng to the L and R Farey steps. We define a canonical 
transformation to eliminate one of the resonances and 
then transform the new Hamlltonian back to its orig- 
inal form 

Suppose formally that each of the parameters A, B, 
C =O(e ) .  We begin by eliminating the m2 = (010)  
resonance by a near identity canonical transforma- 
tion as shown m the Appendix. Then, for the "L" 
transformation, define the new coordinates on T 3 

k'y' = L - '  ky + O ( e )  (4) 
\ l ' z ' /  lz 

In order to maintain the form z ' =  t ' - x ' - y '  the new 
wavenumbers must be 

50: k '=l/k,  l ' = l / ( l + k )  (5) 

Upon defining new momenta corresponding to these 
coordinates, scaling time to t '=kt and scaling the 
momenta to normalize the mass matrix, the Hamll- 
tonlan has the same form as ( 1 ) to O (e3) if we iden- 
tify the new parameters 

50 /~' = ~" ~ - ~  1 
2k 

A'= ( l+k)3flAB B ' =  l + k  
2k 2 ' T C,  

C'= 1 +k A 
- - i f -  (6) 

This is the approximate renormahzatlon operator. 
The transformation corresponding to R is conjugate 
to 50, g¢ = ~50~ under the involution 

( k , l , a , # , r , A , B , C )  

--,(1/k, l/k, ?,fl, a, B,A, C) . <7) 

5. Kinematic renormalization 

The wavenumber and mass renormalizatlon maps 
are independent of the amphtude They arise from 
the purely kinematical rescahng transformations. 
Consider these first. 

The simplest frequency vectors under renormah- 
zatlon correspond to the fixed points of the ~ and 50 
operators. As they are essentially identical, we con- 
sider the 5 ° fixed point here, the frequency vector is 
then the spiral mean (3). 

The wavenumber renormallzatlon (5) is decou- 
pied from the parameters, so we can consider it sep- 
arately The wavenumber map takes the positive 
quadrant to the strip {0<k, 0< l~1} ,  which IS 
mapped onto itself. Furthermore £~ maps the posi- 
tive quadrant into the triangle {½ ~l<~k<~ 1}, so the 
map is contracting. Thus there is a unique real fixed 
point 

1 
l = k 2 = _ _  =~ k=a- l ,  l=0--2 (8)  

l + k  

where 0- is the spiral mean. The fixed point is a spiral 
focus with hnearlzatlon 
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(t~k'~ ( - 1  O-~ (bk~ 
~t'/= _o-_.4 01 \~l]" 

The eigenvalues are 

~___0.--3/2 e +1~'/2 , 

cos(c/) = ½ (o-- 1), ~u~ 27tX0.22404487. (9) 

The mass renormalxzation is a hnear map. Recall that 
it has been constructed to preserve the subspace 
a~,-f12= 1. Since the wavenumber map is contract- 
ing, we can evaluate the mass map at the fixed point 
k =  O-- 1. This gives the etgenvalues 

21=1,  ~ , 2 , 3 = e  +-'w . (10) 

Therefore this map is not contracting - m general the 
mass matrix rotates with a rotaUon number of ~u/27t 
that ~s very nearly ~. The e~genvectors are 

_+1 

\ C s c ( ~ ) /  \COS(W)/ \ - - s m ( ~ , ) /  

The first eigenvector corresponds to a fixed point, but 
the general orbit of the mass matrix is a rotation about 
this fixed point. The general orbit offl under A¢ ~s 

fin = f l o + r c o s ( n ~ + ~ ) ,  //2 = r  2 cos2~+ cot2~. 
(11) 

Here r and ~ are determined by the initial conditions. 
This wolates the noUon of"untversallty": asymptot- 
lcs of the orbit under the renormalization depend on 
the parameters of  the inmal Hamlltonian. 

6. A m p l i t u d e  renormal i za t ion  

The parameter map depends on the wavenumber 
k and the mass matrix through ft. Consider first the 
case when r=O, so that f l=cot (¢/) is fixed. In this case 
there are two fixed points, A = B= C =  0 - the KAM 
fixed point, and the critical fixed point 

2 2 2 
A c -  O-14fl, Bc= O-Sfl' CC= O. 1 i f t .  (12) 

The KAM fixed point is stable. The stability of the 
critical point can be studied by talong the log of the 
amplitude map to give, in terms of a=log(A) ,  
b=log(B) ,  c=log(C) ,  the affine map 

(a) (i 1 b' = 0 1 b + [  log(o- 3) / "  (13) 
c' 0 0 c \ log(o- 3) / 

Thus stability is governed by the linear matrix above. 
This matrix has characteristic polynomial 23-22 
- 1 = 0 (interestingly, this polynomial is not related 
to the spiral mean), so that 

21 = ~  1.465571232, 

)[2,3 =(~--1/2 e +11 856478541 (14) 

Thus there is a one dimensional unstable manifold, 
and a two dimensional, spiral stable manifold. The 
contraction on the stable manifold is rather slow, and 
the rotation number is very nearly -~. 

For the general case, fl is not fixed, and the ampli- 
tude map is periodically forced. However, there is still 
a two dimensional center-stable manifold which has 
a one dimensional unstable manifold. On the center 
manifold the parameters converge to a circle on which 
the dynamics is a simple rotation with rotation num- 
ber ~/2rt. 

7. C o n c l u s i o n  

We have found an approximate renormalization 
descnptlon for the boundary of existence of the spi- 
ral mean torus for a 2½ degree of freedom Hamilto- 
man - or equivalently a four dimensional symplectic 
map. The boundary is a codimension one surface in 
the space of  parameters. It is the center-stable mani- 
fold of a critical fixed point of  the renormalization 
operator with the single unstable eigenvalue 
J ~  1.4655 and two neutral eigenvalues. All orbits on 
the center-stable manifold are attracted to the center 
manifold under renormalxzation. The renormallza- 
tion dynamics on the center manifold is a rotation 
with irrational wandlng ratio. 

Rotations arise because successive rational ap- 
proximants of the incommensurate vector spiral in- 
wards (there is an analogous oscillation in 1½ degrees 
of freedom that is responsible for the momentum 
scaling eigenvalue being negative). This rotation gives 
rise to the rotation of the mass matrix parameters, 
which in turn drives an oscdlation of the resonance 
amplitudes (A, B, C). 
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Thus, if we take our model at face value, it predicts 
that a typical one parameter system is not "self-sim- 
ilar" at cntlcahty. Instead properties of the system 
such as the stability parameters of periodic orbits (i.e. 
the residues) are predicted to oscillate wtth rotation 
number of  approximately 2. The amphtude of the o s- 
cdlatlon will depend upon the system studied; in our 
model it depends upon the off-diagonal element in 
the mass matrix (alternatively one can think of  this 
as coming from the wavevectors not being 
perpendicular). 

Indeed, previous attempts to find the cntlcal point 
for a spiral mean torus have seen evidence for these 
oscillations. Artuso et al. [ 10] studied a 3D volume 
preserving map, and found that the residues of peri- 
odic approximations to a spiral mean torus oscil- 
lated, apparently vath period 9. 

Now the true renormahzatlon dynamics need not 
look the same as our approximate model, even if it is 
a very good approximation. This is because no rota- 
Uon is stable to perturbation. Arbitrarily small per- 
turbaUons of a rotation can make the fixed point 
weakly attracting or repelling, and can generate 
weakly attracting or repelhng mvarlant circles around 
the fixed point, or chains of periodic orbits, or Blrk- 
hoff attractors or worse~ What ts stable to perturba- 
tion, however, is the fixed point and a 2D normally 
hyperbolic mvarlant manifold containing It, with 1 
unstable normal direction, the remaining normal d~- 
rectlons being attracting. The stable manifold of this 
2D normally hyperbolic mamfold has codimenslon 1 
and can be expected to be the boundary of KAM the- 
ory It would be worth trying to find the fixed point, 
because It would be an ~mportant handle on the nor- 
mally hyperbolic manifold We call it a codlmens~on- 
3 fixed point because m our model it has three elgen- 
values which are not stnctly inside the unit circle, so 
it has three-dimensional center-unstable manifold, 
and hence requires three parameters to find it. 

The analogue of Greene's residue criterion might 
be used to find the fixed point by studying the stabil- 
ity of the periodic orbits making up successive cones 
in the Farey sequence for to. Each of  the three orbits 
bounding the cone has a pa~r of residues. One must 
find a set of parameter values for which the limit of 
all of  these residues neither goes to infinity nor zero 

We conjecture that the breakup boundary may have 
various components corresponding to the direct for- 

matlon of full cantorus (which we know exists close 
enough to the antl-lntegrable hmlt for maps [23 ] or 
of a partial cantorus corresponding to a Cantor set 
cross a circle with various homotopy types. It is rea- 
sonable that the codimension three fixed point will 
form the organizing center for these various 
bifurcations. 
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Appendix 

Here we construct the renormaltzatlon transfor- 
mauon that corresponds to the Farey step "L". This 
transformation takes the cone formed from the reso- 
nances M =  I to M =  L-1.  This corresponds to ehml- 
nating the m2 = (0, 1, 0) resonance and adding the 
m 2 - m l  = ( - 1, 1, 0) resonance. To accomphsh this 
we find coordinates to ehmmate the B cos (2nky) term 
m H. Supposing that the resonance amplitudes are 
formally O(~), and that the frequency m2.to=toy = 
k(f lu+yv) is nonzero on the orbits of interest (i.e. 
the neighborhood of the invariant torus), then this 
can be accomphshed by the near identity canonical 
transformation (x, y, u, v ) ~ ( X ,  Y, U, V) generated 
by 

B 
S = U x + V y -  2--~y sm(2nky)+O(E2) ,  (A 1) 

so that u=Sx=U+O(~2) ,  v = S r = V + O ( E ) .  Thxs 
g~ves the Hamiltonlan 

+A cos (2nx) + C cos(2n/z) + ½~,S 2 + O(~ 2) 
(A.2) 

Since S 2 = O (¢ 2), this term in H can be ehmlnated 
by adding an appropriate O (~2) to S. Substituting for 
X = x + O ( ~ ) ,  Y=y+O(E) ,  and Z = t - X -  Y, and ex- 
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pandmg the cosine terms gdves four O ( E 2 ) resonance 
terms in H. We judiciously choose the O(e  2) term in 
S (assuming that the resonance denominators,  
co~+ toy and m=+my are nonzero - as they will be in 
the neighborhood of  our incommensurate  torus)  to 
eliminate all o f  these extra terms but one, leaving H 
in the form 

u 
H ( X , Y ,  U, V)=½(U,  V) . ( f l  , ) ' ( V )  

+A cos(2rtX) + C cos( 2nlZ)  

ABk  fl + -~jycos[2n(kY-X)]+O(¢ 3) . (A.3) 

The amplitude o f  the new resonance depends upon 
( U, V) through the resonance denominator  09 r In the 
spirit o f  C h m k o v  we evaluate this amplitude on the 
( - 1, 1, 0) resonance, thus 

0=~--.~ ~ ( . O y = ( , O  x . 

However, this does not determine the frequency. We 
choose, somewhat arbitrarily, to evaluate the fre- 
quency at the new penodlc orbit, p = [ 1, 1 ,0  ], where 
O=coz=~=  1 - ~ - # .  Th~s imphes that 

k 
my = t o x =  1 + k "  (A 4) 

We now transform the coordinates on the torus as in 
(4),  to return the phases in H to their original form. 
This transformation (X, Y, U, V)--, (x ' ,  y ' ,  u', v ' )  is 
generated by 

(A.5) S = u ' ( k Y - X )  + k v ' ( t - X -  Y ) ,  

so that 

(u) 
- k J \ v ' , l  = W , . 

(A.6) 

Note that even if  the mass matrix were originally dt- 
agonal, this transformation would generate an off-di- 
agonal term. The new Hamll tonian is 

H=½(u', v','WI(°~ ' )  w'(U:) "~-kv ' 

AB flk 
+ ~ cos(2xx  ) + Ccos(27rk 'y ' )  

+A cos(21rl 'z ')  "{-O(~ 3) , (A 7) 

where z ' = k t - x ' - y ' .  The hnear term kv' can be ab- 
sorbed by shifting the o n g m  of  the momenta.  Finally, 
we rescale time to restore the form of  z, rescale the 
momenta  to make the determinant o f  the new mass 
matrix unity, and rescale H to maintain the canonical 
form of  the equations: 

l + k  _ t=kt, (a,~)=(g+k)(u',v'), ~ q = - - ~ n .  

(A.8) 

The resulting Hamil toman is given by ( 1 ) to O (~ 3), 
under  the map ( 5 ), (6).  The final momen tum trans- 
formation, including the shift in origin, is 

u ' =  - u + v - f l ' + O ( ~ )  , 

v ' = - u -  k v + o t ' + O ( E ) .  (A.9) 

Note that tMs is an expanding map on the momenta  
(when k >  0), corresponding to enlarging the phase 
space in the neighborhood of  the torus. 
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