1 August 1994

PHYSICS LETTERS A

ELSEVIER Physics Letters A 190 (1994) 417-424 —

An approximate renormalization for the break-up of invariant tori
with three frequencies

R.S. MacKay !, J.D. Meiss 2, J. Stark

Centre for Nonhnear Dynamics and Applications, University College London, London WCIE 6BT, UK

Recerved 8 Apnil 1994, revised manuscript received 21 April 1994, accepted for publication 17 May 1994
Communicated by A.R. Bishop

Abstract

Renormahization theory provides a description of the destruction of invariant ton for Hamiltonian systems of 14 or 2 degrees
of freedom, and explains the self-similarity and the universality of the structures observed A simular theory for higher dimen-
sional Hamiltoman systems has proved elusive Here we construct an approximate renormalization for a Hamiltonian system
with 2} degrees of freedom analogous to the lower dimensional version of Escande and Doveil. Using this operator we study the
cntical surface for the “spiral mean” invanant torus We find that there 1s no universal fixed point Instead the renormalization
dynamics on the critical surface 1s a rotation with irrational winding ratio. Implications for the determination of the exact critical

surface are discussed.

1. Introduction

The Kolmogorov-Armol’d-Moser (KAM) theo-
rem 1mplies that sufficiently incommensurate invar-
iant tori of integrable Hamiltonian systems or sym-
plectic maps are preserved for small enough
perturbations. Alternatively, in many such systems
one can use “converse-KAM™ theory to show that for
certain parameter and frequency ranges there will be
no invariant tor1 continuously deformable to those of
the integrable case [1-4]. The set of parameters for
which there exists an invariant torus of a given Dio-
phantine frequency with smooth conjugacy to rota-
tion and the set for which there does not exist any
invariant torus of that frequency are both open. The
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destruction of invariant tor1 signals the onset of chaos,
and (particularly for two degrees of freedom) the loss
of stability. Thus 1t is of great interest to develop
techmiques for studying this destruction.

In 1979 Greene [5] made the remarkable discov-
ery in embryonic form that the phase space of an area
preserving map exhibits self-similarity in the neigh-
borhood of a cntical invaniant circle with golden mean
winding ratio. This observation led to the construc-
tion of renormalization operator on the space of area
preserving maps [6,7]. This operator has also been
extended to general winding ratios [8,9]

There have been many unsuccessful attempts to
find a similar self-similarity for the breakup of tori in
higher dimensions [10-15]. In these cases the au-
thors studied three frequency systems: either maps of
the torus, volume preserving maps, or four dimen-
sional symplectic maps.

In order to discover the reason for this failure, we
will construct an analytic approximation to the re-
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normalization operator for 24 degrees of freedom.
Our construction 1s analogous to that of Escande and
Doveil [16,17] who considered the case of 14 de-
grees of freedom. Their approximate renormaliza-
tion provides a simple model that has many of the
features of the exact renormalization and yields,
within a few percent, the main eigenvalues near the
critical golden fixed point. It can also be used to dis-
cuss such 1ssues as the robustness of tor1 with daffer-
ent rotation numbers and the expected rotation num-
bers for boundary tor1 [18-20] - though 1t loses
accuracy for frequencies that have large continued
fraction elements.

Escande and Doveil studied a model correspond-
1ng to the motion of a particle in one dimension acted
on by two waves with different wavenumbers (with-
out loss of generality 1 and k) and phase velocities
(without loss of generality O and 1):

H(p, x, t)=1ip*+Acos(2nx)+Bcos[2nk(x—1)]

This Hamiltonian has three parameters and 1s peri-
odic of period 1 1n the configuration variables (x,
y=k{(x—1)). When 4 =B=0 there 1s a torus for each
p with frequency vector w= (X, y). The renormali-
zation 1s a map # (A, B, k)= (A4’, B’, k') of the pa-
rameters giving a modified Hamiltonian describing
the system in new coordinates. These are essentially
obtained by a shear 1n the configuration variables and
a magnification of the momentum. The shear 1s ar-
ranged so that the new configuration coordinates are
more closely aligned with the frequency vector of the
invariant torus of interest. The shear 1s a unimodular
transformation (to maintain periodicity) and 1t cor-
responds to one step of the Farey expansion for w
The magnification focuses on a layer around the po-
sition of the torus. The simplest way to obtain such a
map is to perform the canonical and rescaling trans-
formations to lowest order in the amplitudes A and
B, though one can be much more sophisticated. The
Hamuiltonian 1n the new coordinate system takes a
form identical to the original one upon mapping the
parameters.

We will construct a similar operator for a system of
24 degrees of freedom. We also choose a Hamilto-
nian corresponding to a particle in a time dependent
potential. One important new feature 1s the presence
of a mass matrix in the kinetic energy, we will see that
the off-diagonal elements of this matrix are essential

The second new feature 1s the use of the Kim-Os-
tlund generalization of the Farey tree [21] to con-
struct the shear transformation.

We begin by defining the model Hamiltonian.

2. Model Hamiltonian

A particle in the plane that 1s acted on by a poten-
tial from three electrostatic waves has the
Hamiltonian

1, &
=—p°+ cos(k,x—aw,t
smP ,; @, cos (k, 1)
Providing that none of the wavevectors k, are paral-
lel, we can choose new canonical coordinates (x, u)
and (y, v) to transform H to the standard form

H=%(u, l)) ((; f)(z) +V(x; ky’ lZ) ’

V=A cos(2nx)+ B cos(2nky)+C cos(2nlz) ,
Z=t—x—Yy. (1)

Without loss of generality, the wavenumbers (k, /)
can be taken to be positive and the energy can be
scaled so that the mass matrix has unit determinant,
ay— f2=1. Thus we obtain a seven parameter system.

It 1s useful to think of the motion on the five di-
mensional extended phase space with coordinates
{=(x, y, z, #, v). The Hamiltonian 1s periodic with
peniods (1, 1/k, 1/1) n the configuration variables
(x, y, z) - so the configuration space can be taken to
be the three torus T>={x mod 1, y mod 1/k, z mod
1/1}. Note that one could mcorporate the factors k&
and / into the definitions of y and z to make the pe-
riods unity, but we did not do so. The frequency vec-
tor w 1s the average direction that an orbit moves
around the torus

1
0= A}l_r{loo A (Ax, kAy, [Az)

if the limit exists. We care only about its direction
(defined by two winding ratios), so @ should be
viewed as a point in the projective space RP2 The
frequency 1s commensurate 1if there 1s a nonzero 1n-
teger vector m such that m w=0. Such a relation is a
resonance condition. If there are no resonances for w
then 1t 1s incommensurate. If there are two indepen-
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dent resonances for w, then w=p where p is integral
(remember the length of w is umimportant). A fre-
quency w 18 Diophantine if there is a K0 and 7> 2
such that V meZ3\0, |m w|/|w|>K/|m|".

When A=B=C=0, the momenta (u, v) are con-
stant 1in time and every orbit lies on a three torus. If
w(u, v) 1s incommensurate, the orbit densely covers
the torus. If @ is Diophantine, then the KAM theo-
rem 1mplies that there is a torus with this frequency
for small values of the amplitudes. We are interested
1n determining the parameters for which such a torus
18 destroyed.

The technique 1s to perform a succession of canon-
1cal transformations to coordinates that are more
closely aligned with the incommensurate flow. We use
the Kim-Ostlund extension of the Farey algorithm to
successtvely construct these coordinates.

3. Kim-Ostlund tree

Each of the three phases in V(x, y, z) corresponds
to a resonance m,"w=0. We begin with the three res-
onances m,;=(1,0,0), m,=(0,1,0), m3;=(0,0, 1).
Each resonance corresponds to a plane in R? or a line
in RP? the set of three resonances delineates a cone
(the positive octant) or triangle, se¢ Fig. 1. The in-

Fig | Farey tnangle construction Frequency ratios are denoted
by [ ],and resonancesby ( ) The frequency shown has the Farey
sequence w=LL

tersection of each pair of resonances defines rational
frequencies p,=[1, 0, 01, p,=10, 1, 0], ps=10, O,
1] The frequencies p, also delineate the cone; 1t is the
convex hull of the three vectors. We denote the cone
by either of the matrices

m,
M=|m, ), P=(p.,p2Dp3).
ms

We assume w is inside the cone, i.e. w,=0.

To construct the Farey sequence for w, divide the
cone using the new frequency p’=p, + p,, and corre-
sponding resonance m’'=m,—m,. There 1s now a
right and a left cone Pg = (ps, p1, ') and Pp= (p,, ps,
p’), or Mg=(ms, m’', my) and My = (—m', ms, m;)".
Choose the new cone that contains @ and repeat this
transformation, dividing this new cone nto two. This
gives a sequence of cones that each contain w. The
operations can be represented by the linear
transformations

Mg=S-'M, Ps=PS,
S=R if (my—m,) w>0,

=L if(m,—mz)'wSO,

01 1 001
R=|0o 0 1} L={1 0 1 (2)
100 010

Note that det(R)=det(L)=1, MsPs=I, and
det(Mg) =det(Ps) =1. Repeating this transforma-
tion provides a unique string of matrices S,e{R, L}
for any w, so that we can think of w as the sequence
S515,8S;.... It 15 not difficult to show that if @ is an 1n-
teger vector (with no common factors) then this se-
quence eventually terminates when p;=w [22].

From the Farey point of view, the simplest incom-
mensurate frequency vectors have periodic Farey se-
quences. When the period 1s ¢, w 1s the eigenvector
with the largest eigenvalue of the nonnegative matrix
S;...S,. This implies that the components of w are ele-
ments of a cubic field: they satisfy w,=1+jA+k4?,
where (1,7, k) are integers and A is the eigenvalue — 1t
satisfies a cubic equation with integer coefficients.
The simplest of these is the spiral mean, which is the
eigenvector of L:

w=(1,06%,0), ag*=c+1, 0~1.324717957. (3)
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Similarly the eigenvector of R 1s (63,1, 0)
For the model (1) with 4=B= C=0, the fre-
quency vector for momenta (u, v) 1s

w=(au+ v, k(Bu+y),
1= (a+Byu—(B+y)0]),

and each resonance m, w=0 corresponds to a line 1n
momentum space, as shown 1n Fig 2. Ton1 with ra-
tional frequency ratio, hence consisting entirely of
periodic orbits, occur at the intersections of the res-
onance lines.

4. Renormalization transformation

Our renormalization 1s a coordinate transforma-
tion that focuses in on a region of phase space 1n which
orbits of a given frequency ratio are expected. Here
we will define two such transformations correspond-
ing to the L and R Farey steps. We define a canonical
transformation to eliminate one of the resonances and
then transform the new Hamiltonian back to 1ts orig-
nal form

Suppose formally that each of the parameters A, B,
C=0(€). We begin by elimmating the m,= (010)
resonance by a near 1dentity canonical transforma-
tion as shown 1n the Appendix. Then, for the “L”
transformation, define the new coordinates on T3

’

X X
k'y' | =L-'"l ky] +0(e) (4)
'z Iz

In order to maintain the form z’'=¢'— x’— )’ the new
wavenumbers must be

& k'=lfk, I'=1/(1+k) (5)

Upon defining new momenta corresponding to these
coordinates, scaling time to +'=kt¢ and scaling the
momenta to normalize the mass matrix, the Hamil-
tonian has the same form as (1) to O(e€®) 1f we 1den-
tify the new parameters

al' ! 1/k -2 k a
& ;;3, =17k llc lz—l-ck —;ck f ,
JRLEE Pt
C'= 1‘]:—kA (6)

This 1s the approximate renormalization operator.
The transformation corresponding to R 1s conjugate
to ¥, #=F¥% under the involution

‘a/-: (k9 l’ a’ﬂ’ y!A’ B’ C)
~(1/k,1/k, 7,8, &, B, 4, C) . (7

5. Kinematic renormalization

The wavenumber and mass renormalization maps
are independent of the amplitude They anse from
the purely kinematical rescaling transformations.
Consider these first.

The simplest frequency vectors under renormali-
zation correspond to the fixed points of the # and &
operators. As they are essentially identical, we con-
sider the & fixed point here, the frequency vector 1s
then the spiral mean (3).

The wavenumber renormalization (5) 1s decou-
pled from the parameters, so we can consider 1t sep-
arately The wavenumber map takes the positive
quadrant to the strip {0<k, 0</<1}, which 1s
mapped onto 1tself. Furthermore .#° maps the posi-
tive quadrant 1nto the triangle {} </<k<1}, so the
map 1s contracting. Thus there is a unique real fixed
point

’=k2=ﬁ ~ k=o', l=g-2, (8)

where o 1s the spiral mean. The fixed point 1s a spiral
focus with linearization
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Jk’) _( -1 a) 5k)
olI') " \—-a~* 0J\dl)"
The eigenvalues are

- tiy/2
A=g 3% *wi2,

cos(¥)=4(o—1), w=x27Xx0.22404487 . (9)

The mass renormalization 1s a linear map. Recall that
1t has been constructed to preserve the subspace
ay— fB?=1. Since the wavenumber map is contract-
ing, we can evaluate the mass map at the fixed point
k=0""1. This gives the eigenvalues

A|=], 2.2,3=ei"". (10)

Therefore this map is not contracting — in general the
mass matrix rotates with a rotation number of y/2xn
that 1s very nearly 2. The eigenvectors are

o csc(y) cos(y) sin(y)
B =]|cot(w) |, 1 +1 0
Y csc(y)/ \cos(y) —sin(y)

The first eigenvector corresponds to a fixed point, but
the general orbit of the mass matrix 1s a rotation about
this fixed point. The general orbit of  under £ 1s

Bn=Po+rcos(ny+¢), BE=r%cos?yw+ cot’y.
(11)

Here r and ¢ are determined by the initial conditions.
Thas violates the notion of “universality”: asymptot-
ics of the orbit under the renormalization depend on
the parameters of the initial Hamiltonian.

6. Amplitude renormalization

The parameter map depends on the wavenumber
k and the mass matrix through 8. Consider first the
case when r=0, so that f=cot () is fixed. In this case
there are two fixed points, 4=B=C=0 - the KAM
fixed point, and the critical fixed point

2 2 2
o= giag> Bc=o_—3§, Cc=m-

The KAM fixed point 1s stable. The stability of the
critical point can be studied by taking the log of the
amplitude map to give, in terms of a=log(4),
b=log(B), c=log(C), the affine map

A (12)

a’ 1 1 0\/a log(c®B/2)
b|=]0 0 1]lb]|+ log(a?) . (13)
¢ 1 0 0/\c log(a?)

Thus stability 1s governed by the linear matrix above.
This matrx has characteristic polynomial A3—A?
— 1 =0 (interestingly, this polynomial 1s not related
to the spiral mean), so that

A1 =0~1.465571232,
Ay3 =0 1/2 g 1856478541 (14)

Thus there is a one dimensional unstable manifold,
and a two dimensional, spiral stable mamifold. The
contraction on the stable manifold 1s rather slow, and
the rotation number is very nearly 3.

For the general case, 8 1s not fixed, and the ampli-
tude map 1s periodically forced. However, there is still
a two dimensional center-stable manifold which has
a one dimensional unstable manifold. On the center
manifold the parameters converge to a circle on which
the dynamics 1s a simple rotation with rotation num-
ber w/2n.

7. Conclusion

We have found an approximate renormalization
description for the boundary of existence of the spi-
ral mean torus for a 21 degree of freedom Hamilto-
nian - or equivalently a four dimensional symplectic
map. The boundary is a codimension one surface 1n
the space of parameters. It 1s the center-stable mani-
fold of a critical fixed point of the renormalization
operator with the single unstable eigenvalue
d0~1.4655 and two neutral eigenvalues. All orbits on
the center-stable manifold are attracted to the center
manifold under renormalization. The renormahiza-
tion dynamics on the center manifold 1s a rotation
with 1rrational winding ratio.

Rotations arise because successive rational ap-
proximants of the incommensurate vector spiral 1n-
wards (there 1s an analogous oscillation in 14 degrees
of freedom that is responsible for the momentum
scaling eigenvalue being negative ). This rotation gives
nise to the rotation of the mass matrix parameters,
which 1n turn drives an oscillation of the resonance
amplitudes (4, B, C).
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Thus, 1f we take our model at face value, 1t predicts
that a typical one parameter system 1s not “self-sim-
lar” at criticality. Instead properties of the system
such as the stability parameters of periodic orbits (1.e.
the residues) are predicted to oscillate with rotation
number of approximately 3. The amplitude of the os-
cillation will depend upon the system studied; 1n our
model 1t depends upon the off-diagonal element 1n
the mass matrix (alternatively one can think of this
as comung from the wavevectors not being
perpendicular).

Indeed, previous attempts to find the critical point
for a spiral mean torus have seen evidence for these
oscillations. Artuso et al. [10] studied a 3D volume
preserving map, and found that the residues of pen-
odic approximations to a spiral mean torus oscil-
lated, apparently with period 9.

Now the true renormalization dynamics need not
look the same as our approximate model, even 1f 1t 1s
a very good approximation. This 1s because no rota-
tion 1s stable to perturbation. Arbitrarily small per-
turbations of a rotation can make the fixed point
weakly attracting or repelling, and can generate
weakly attracting or repelling invariant circles around
the fixed point, or chains of periodic orbits, or Birk-
hoff attractors or worse! What us stable to perturba-
tion, however, 1s the fixed point and a 2D normally
hyperbolic invariant manifold containing 1t, with 1
unstable normal direction, the remaining normal di-
rections being attracting. The stable mamifold of this
2D normally hyperbolic manifold has codimension 1
and can be expected to be the boundary of KAM the-
ory It would be worth trying to find the fixed point,
because 1t would be an important handle on the nor-
mally hyperbolic manifold We call 1t a codimension-
3 fixed point because 1n our model it has three eigen-
values which are not strictly inside the umit circle, so
1t has three-dimensional center-unstable manifold,
and hence requires three parameters to find 1t.

The analogue of Greene’s residue criterion might
be used to find the fixed point by studying the stabil-
ity of the periodic orbits making up successive cones
in the Farey sequence for w. Each of the three orbits
bounding the cone has a pair of residues. One must
find a set of parameter values for which the limit of
all of these residues neither goes to infinity nor zero

We conjecture that the breakup boundary may have
various components corresponding to the direct for-

mation of full cantorus (which we know exists close
enough to the anti-integrable limit for maps [23] or
of a partial cantorus corresponding to a Cantor set
cross a circle with vartous homotopy types. It 1s rea-
sonable that the codimension three fixed point will
form the orgamizing center for these various
bifurcations.
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Appendix

Here we construct the renormalization transfor-
mation that corresponds to the Farey step “L”. This
transformation takes the cone formed from the reso-
nances M=1to M=L !, This corresponds to elimi-
nating the m,=(0, 1, 0) resonance and adding the
my—m;=(—1, 1, 0) resonance. To accomplish this
we find coordinates to eliminate the B cos(2nky) term
in H, Supposing that the resonance amplitudes are
formally O(e), and that the frequency m, w=w,=
k(Bu+yv) 1s nonzero on the orbits of interest (Le.
the neighborhood of the invariant torus), then this
can be accomplished by the near identity canonical
transformation (Xx, y, u, v)—- (X, Y, U, V) generated
by

S=Ux+Vy- sin(2nky) +O(€?) (A1)

B
2nw,

so that u=S,=U+0(€?), v=S,=V+0(e). This
gives the Hamiltoman

e (5 ()

+A4 cos(2nx) + Ccos(2mlz) + 4yS2+ O(€?)
(A.2)

Since S2=0(€?), this term 1n H can be ehminated
by adding an appropnate O (€?) to S. Substituting for
X=x+0(¢), Y=y+0(¢),and Z=t— X—-Y, and ex-
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panding the cosine terms gives four O(€?) resonance
terms in H. We judiciously choose the O(€?) term in
S (assuming that the resonance denominators,
w,+w, and w,* w, are nonzero - as they will be in
the neighborhood of our incommensurate torus) to
eliminate all of these extra terms but one, leaving H
1n the form

e n-in(; (2
+A4 cos(2nX)+C cos(2nlZ)

ABKB
2w}

+ cos[2n(kY—X)]1+0(e?) . (A.3)
The amplitude of the new resonance depends upon
(U, V) through the resonance denominator w,. In the
spirit of Chirikov we evaluate this amplitude on the
(-1, 1, 0) resonance, thus

0=k)')—5c = Wy=0W,.

However, this does not determine the frequency. We
choose, somewhat arbitrarily, to evaluate the fre-
quency at the new periodic orbit, p=[1, 1, 0], where
O0=w,=2=1—-Xx—y. This implies that

k

Wy =Wx= m

(Ad)

We now transform the coordinates on the torus as 1n
(4), to return the phases in H to their original form.
This transformation (X, Y, U, V) (X, y', w', v’} is
generated by

S=uw'(kY-X)+kv'(t—X-Y), (A.5)

so that

0)-(G2)C)-#() o

Note that even if the mass matrix were originally di-
agonal, this transformation would generate an off-di-
agonal term. The new Hamuiltonian is

H=4(u', v') Wt (Z ’:) W(l'f) +kv'
ABSk

2
2wy

+Acos(2rl’'z’)+0(€?), (A7)

+

cos(2nx’)+ Ccos(2nk'y’)

where z’=kt—x’—y’. The linear term kv’ can be ab-
sorbed by shifting the origin of the momenta. Finally,
we rescale time to restore the form of z, rescale the
momenta to make the determinant of the new mass
matrix unity, and rescale H to maintain the canonical
form of the equations:

t=kt, (ﬂ,ﬁ):(l-}-k)(u” y’)’ ﬁ'=1_+_lfH

k
(A.8)

The resulting Hamiltonan 1s given by (1) to O(e?),
under the map (5), (6). The final momentum trans-
formation, including the shift 1n origin, 1s

U=—ut+v-+0(e),

v’=—u—%v+a'+0(e). (A.9)

Note that this is an expanding map on the momenta
(when k> 0), corresponding to enlarging the phase
space in the neighborhood of the torus.
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