
Approximation
Atkinson Chapter 4, Dahlquist & Bjork Section 4.5, Trefethen’s book

Topics marked with ∗ are not on the exam

1 In approximation theory we want to find a function p(x) that is ‘close’ to another function f(x). We can
define closeness using any metric or norm, e.g.

‖f(x)− p(x)‖22 =

∫
(f(x)− p(x))2dx or

‖f(x)− p(x)‖∞ = sup |f(x)− p(x)| or

‖f(x)− p(x)‖1 =

∫
|f(x)− p(x)|dx.

In order for these norms to make sense we need to restrict the functions f and p to suitable function spaces.
The polynomial approximation problem takes the form: Find a polynomial of degree at most n that

minimizes the norm of the error. Naturally we will consider (i) whether a solution exists and is unique,
(ii) whether the approximation converges as n → ∞. In our section on approximation (loosely following
Atkinson, Chapter 4), we will first focus on approximation in the infinity norm, then in the 2 norm and
related norms.

2 Existence for optimal polynomial approximation. Theorem (no reference): For every n ≥ 0 and f ∈
C([a, b]) there is a polynomial of degree ≤ n that minimizes ‖f(x) − p(x)‖ where ‖ · ‖ is some norm on
C([a, b]).

Proof: To show that a minimum/minimizer exists, we want to find some compact subset of the set of
polynomials of degree ≤ n (which is a finite-dimensional space) and show that the inf over this subset is
less than the inf over everything else. Then the minimizer must exist, and must lie in the compact subset.
(For this proof it doesn’t matter if C([a, b]) is complete with respect to the norm ‖ · ‖ because we are always
dealing with the space of real polynomials of degree ≤ n, which is finite-dimensional and complete wrt any
norm.)

The triangle inequality implies that for any p,

‖f‖+ ‖p‖ ≥ ‖f − p‖ ≥ |‖f‖ − ‖p‖| .

Consider the subset of p st ‖p‖ ≤ 2‖f‖. This is a compact set: it is a closed, bounded subset of a finite-
dimensional space. Over this set a minimizer/minimum of ‖f − p‖ exists, and using the above implies

‖f‖ ≥ minimum over the subset ≥ 0.

Taking the infimum over the complement of the compact set yields

3‖f‖ ≥ inf over the complement ≥ ‖f‖.

The minimum/minimizer over all polynomials of degree ≤ n must therefore exist, and must lie in the
set ‖p‖ ≤ 2‖f‖. This proves existence of an optimal polynomial for any norm on C([a, b]). To consider
uniqueness, construction, and behavior of the error as n→∞ we examine specific norms.
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‘Minimax’ (L∞) Polynomial Approximation

1 Weierstrass Approximation Theorem. Define

ρn(f) = min ‖f − p‖∞

where the min is taken over polynomials p of degree ≤ n. We know a minimizing polynomial exists by the
previous theorem, but we don’t yet know whether it’s unique. Before asking about uniqueness, we’ll first
look at whether ρn(f)→ 0 as n→∞. (Clearly the sequence ρ0, ρ1, . . . is non-increasing and bounded below
(by 0), so it must have some limit.)

Weierstrass approximation theorem: For every f(x) ∈ C([a, b]) and ε > 0 there is a polynomial p(x) (not
unique) such that

‖f − p‖∞ = max
x∈[a,b]

|f(x)− p(x)| ≤ ε.

A constructive but not instructive proof can be found in Atkinson. It makes use of Bernstein polynomials,
which are not really useful in practice, so we skip the proof. (Several other proofs exist; see Approximation
Theory and Approximation Practice, Chapter 6 by Trefethen for a list of proofs.) In the above theorem, the
degree of the polynomial depends on f , and on ε. It is not too hard to rigorously connect this theorem to
the previous question; it implies that ρn(f)→ 0 as n→∞ for any f ∈ C([a, b]). (Proof, e.g. by reductio.)

How quickly does ρn(f) → 0? Atkinson (4.11): If f has k ≥ 0 continuous derivatives on [a, b] and the
kth derivative satisfies

sup
x,y∈[a,b]

|f (k)(x)− f (k)(y)| ≤M |x− y|α

for some M > 0 and 0 < α ≤ 1 [f (k) satisfies a Holder condition with exponent α] then there is a constant
dk independent of f and n for which

ρn(f) ≤ Mdk
nk+α

.

(No proof.) For example if f is Lipshitz continuous with Lipshitz constant K then M = K and α = 1, and
the convergence is at least linear. On the other end of the spectrum, if f is C∞([a, b]) then the convergence
is faster than 1/nk for any k ≥ 1.

2∗ So we have existence (any norm) and convergence (max norm). Before looking at uniqueness, develop
some intuition through an example. Let [a, b] = [−1, 1], f(x) = ex, and n = 1. Seek a solution of the form
p(x) = a0 + a1x. Drawing the picture, we see that

• The line must cross the function at two distinct points

• The max abs error ρ1 must be achieved at exactly three points: x = −1, x∗, 1

• At x∗ the error has a local minimum, so f ′(x∗)− p′1(x∗) = 0

The last two points imply the following equations

e−1 − (a0 − a1) = ρ1, e− (a0 + a1) = ρ1, ex∗ − (a0 + a1x∗) = −ρ1, ex∗ − a1 = 0

There are four unknowns a0, a1, x∗, and ρ1. This is a nonlinear system of equations, whose solution we
could find using a fixed-point iteration like Newton’s method. Alternatively, we can subtract the first two
equations to get

a1 =
e− e−1

2

Then find
x∗ = ln(a1)

Then solve the remaining 2× 2 linear system for a0 and ρ1.
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Notice that for our polynomial of degree n = 1, the maximum absolute error is attained at n + 1 = 3
distinct points in the interval. This behavior is generic/universal, as the next theorem shows.

3 Chebyshev Equioscillation Theorem. Let f ∈ C([a, b]) and n ≥ 0. Then there is a unique polynomial q of
degree ≤ n such that

ρn(f) = ‖f − q‖∞.

Furthermore, this polynomial is the only polynomial for which there are at least n+ 2 distinct points

a ≤ x0 < x1 < · · · < xn+1 ≤ b

for which
f(xj)− q(xj) = σ(−1)jρn(f)

where σ = ±1 (depending on f and n).

We will prove only the weaker statement that “if there are n + 2 distinct points where the error equi-
oscillates, then the polynomial is a minimizer.” (Proof from D&B)

The proof is by contradiction, so we assume that there are at least n + 2 points where the error equi-
oscillates, but that the polynomial is not optimal.

• First recall that we know a minimizer exists, just not whether it’s unique. So, suppose that there is a
polynomial p̃ of appropriate degree, and consider the set of points where its error is maximized

M = {x ∈ [a, b] | |f(x)− p̃(x)| = ‖f − p̃‖∞ and oscillates}.

Recall that we are assuming that there are at least n+ 2 points in M .

• If p̃ is not an optimal approximation, we can add another polynomial p 6= 0 such that q = p̃ + p is a
better approximation.

|f(x)− (p̃(x) + p(x))| < |f(x)− p̃(x)| ∀x ∈M.

• The above inequality implies that p must have the same sign as the error f − p̃ at every point x ∈M ,
so that adding p reduces error. This implies

(f(x)− p̃(x))p(x) > 0 ∀x ∈M.

• There are at least n + 2 points in M . The polynomial p has to have at least (n + 2) − 1 roots (each
sign change requires a root). But p has degree ≤ n, so it can have at most n roots. Clearly this is not
possible, because then p would have to have n+ 1 roots.

4∗ So now we have existence, convergence, and uniqueness, and an interesting fact about the behavior of
the error (equioscillation). Can we compute the optimal polynomial? There is an iterative algorithm due to
Remez (1934): the ‘Remez exchange algorithm.’ The algorithm is given in D&B, along with references; if f
is sufficiently smooth it can be shown that the algorithm converges quadratically.

5 Can we estimate ρn(f)? Well clearly, if we have any polynomial p then ρn(f) ≤ ‖f − p‖∞. This is
not terribly useful. A lower bound would be more interesting. If we know ρn(f) ≥ 0.25, and we have a
polynomial approximation with ‖f − p‖∞ = 0.25001 then maybe we’re close enough.

Atkinson 4.9 (de la Vallee-Poussin). Suppose that we have a polynomial q such that f − q oscillates

f(xj)− q(xj) = (−1)jej , j = 0, . . . , n+ 1

and all the ej nonzero and the same sign, and

a ≤ x0 < · · · < xn+1 ≤ b

3



Then
min
j
|ej | ≤ ρn(f).

The proof is similar to the equioscillation proof, and works by contradiction: assume that minj |ej | >
ρn(f). Assume WLOG that the ei are positive. Denote the optimal polynomial by p, and define r(x) =
q(x)− p(x). This is a polynomial of degree ≤ n. Evaluate r(x) at each of the xj :

r(x0) = q(x0)− p(x0) = (f − p)0 − (f − q)0 = (f − p)0 − e0 < 0

The last inequality is because |(f(x) − p(x))| ≤ ρn(f) for every x, and ρn(f) is (by the assumption we’re
going to contradict) smaller than e0. Next

r(x1) = q(x1)− p(x1) = (f − p)1 − (f − q)1 = (f − p)1 + e1 > 0

Proceeding to the last point, we see that r(x) changes sign n+ 1 times, i.e. it must have at least n+ 1 zeros,
which is a contradiction (because r has degree ≤ n by construction).

The way that this is used is to first construct an approximating polynomial q using some other means,
then (if the error oscillates) to evaluate minj |ej |.

‘Least-Squares’ (L2) Polynomial Approximation

1 We now consider the standard L2 norm and weighted L2 norms of the form

‖f − p‖2w :=

∫
(f(x)− p(x))2w(x)dx

where w(x) ≥ 0 is a ‘weight function’ such that
∫
xkw(x)dx is finite for every k. We need this condition in

order to guarantee that the integral
∫
w(x)p(x)dx is well-defined for polynomials of any degree. We already

know that the problem

Given a function f ∈ C[a, b], find a polynomial p of degree ≤ n that minimizes ‖f − p‖

has a solution for all these norms. (Note that we’re approximating functions in C[a, b] using a weighted L2

norm; we’re not approximating functions in L2, which are much harder to define.)
L2 and weighted L2 norms are special because they are associated with inner products

‖f‖2w = 〈f, f〉w where 〈f, g〉w =

∫
f(x)g(x)w(x)dx.

It is straightforward to verify that this is an inner product (symmetric, positive, bilinear). The fact that the
norm is associated with an inner product implies that the optimization problem is quadratic, which means
we can compute a solution by solving a linear system for the critical point. Other norms not associated with
inner products do not have this property, and therefore lead to nonlinear systems of equations/non-quadratic
optimization. Summary: Least-squares approximation is special because you can find the optimal approx-
imation by solving a linear system.

2∗ Recall the real finite-dimensional case. Every inner product on RN can be written as 〈v,w〉 = vTCw
where C is a symmetric positive definite matrix. The matrix C is analogous to the weight function w(x).

‖v‖C =
√
vTCv is a weighted L2 norm on Rn.

Consider the problem of finding the closest point v in a subspace to some other point b, where distance
is measured using an inner-product norm. Let the columns ai of A be a basis for the subspace, so that any
v in the subspace can be written uniquely as v = Ac. The (squared) ‘distance’ between v and b is

‖v − b‖2C = ‖Ac− b‖2C = (Ac− b)TC(Ac− b)

= cTATCAc− 2cTATCb + bTCb.
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This is a non-negative quadratic function, so a minimum must exist. Taking the derivative and setting to
zero to find a critical point yields

ATCAc = ATCb.

The coefficient matrix is a ‘Gram matrix’; it is SPD because the columns of A are linearly independent. So
the problem has a unique solution of the form

v = Ac = A
(
ATCA

)−1
ATCb.

Clearly this involves solving a linear sytem.
The problem is easier to solve if we use an orthogonal basis. Let the columns qi of the matrix Q form an

orthogonal basis for the subspace. The fact that the columns of Q are orthogonal wrt the C inner product
(aka C-conjugate) means that QTCQ = D is diagonal with positive diagonal elements. In fact, Dii = ‖qi‖2C .
So the above expression can be re-written as

v = QD−1QTCb =
∑
i

〈qi, b〉
‖qi‖2C

qi

where the inner product is as defined above. Using an orthogonal basis means we still have to solve a linear
system for the coefficients, but the system is diagonal. Notice that the remainder b− v is C-orthogonal to
the subspace:

〈qi, b− v〉 = . . . = 0.

In fact, the solution v is the C-orthogonal projection of b into the subspace. One can alternatively pose the
least-squares problem as finding the c that sets the residual b −Ac orthogonal to the search space; this is
the basis for Galerkin projection methods.

3 The polynomial case is a direct generalization of the linear algebra. Indeed the only difference is that
the thing we are trying to approximate is an element of an infinite-dimensional vector space (though the
approximation is within a finite-dimensional subspace). The only meaningful implication of this fact is for
convergence as the dimension of our subspace increases to infinity (which will be addressed in due time).

Now suppose that we have a basis {φi(x)}n0 for the space of polynomials of degree ≤ n. Any polynomial
of degree ≤ n can therefore be written

p(x) =
∑
i

ciφi(x). (Analogue: v = Ac)

We want to solve for the coefficients ci of the optimal polynomial. Plug this representation in to ‖f − p‖2w

‖f(x)− p(x)‖2w =

∫
(f(x)− p(x))2w(x)dx =

∫
f(x)2w(x)dx− 2

∫
f(x)p(x)w(x)dx+

∫
p(x)2w(x)dx

= ‖f‖2w − 2
∑
i

ci

∫
f(x)φi(x)w(x)dx+

∑
i

∑
j

cicj

∫
φi(x)φj(x)w(x)dx

Define the following vector and matrix:

fi =

∫
f(x)φi(x)w(x)dx = 〈f, φi〉, Mij =

∫
φi(x)φj(x)w(x)dx.

With these definitions we can write

‖f(x)− p(x)‖2w = ‖f‖2w − 2cTf + cTMc.

This is directly analogous to the linear algebra expression with

f = ATCb, M = ATCA.
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We now want to find the minimizer c of this quadratic function. So we take the derivative, set it equal to
zero, and get

Mc = f .

The matrix M is a Gram matrix, so it is symmetric positive definite. For example, if the basis functions are
φi(x) = xi and we’re using the standard, unweighted L2 inner product on [0, 1], then the matrix M is the
so-called Hilbert matrix

Mij =
1

i+ j + 1
.

Although it’s SPD, it is horrifically badly conditioned for large n.
If you have an orthogonal basis, then the matrix M is diagonal. Even if a diagonal matrix is horrifically

badly conditioned, it can still be inverted without worry about roundoff errors. If you have an orthogonal
basis then the linear system for the coefficients is

Dc = f

where the diagonal entries of D are
∫
φi(x)2w(x)dx = ‖φi‖2w, so the coefficients are just

ci =
〈f, φi〉
‖φi‖2w

.

Comment: Notice that to compute the optimal polynomial approximation, you have to be able to
compute the integrals associated with the coefficients of the solution formula. Sometimes you can do this
analytically. Otherwise you have to do a numerical approximation to the integrals, which we discuss in the
section on quadrature (Atkinson, Chapter 5).

4 Now, consider whether the approximation converges as n → ∞. First note that for any polynomial p of
degree ≤ n we have ∫ b

a

(f(x)− p(x))2w(x)dx ≤ ‖f − p‖2∞
∫ b

a

w(x)dx.

The inequality only assumes that w is integrable on [a, b], and that f is bounded. (If the interval is infinite
then it doesn’t necessarily work.) Now consider the minimum of each expression over all polynomials p of
degree ≤ n

Smallest possible weighted L2 approximation error of degree n ≤ ρn(f)

(∫ b

a

w(x)dx

)1/2

.

We know that for any continuous function f(x), ρn(f)→ 0 as n→∞, so the weighted L2 norm of the error
will also go to zero. As a cautionary tale, note that the sequence of polynomials xk converges to 0 over
[0, 1] in the L2 norm, but it does not converge pointwise. In general the question of whether the weighted
L2 approximation converges uniformly (and therefore pointwise) depends on the weight function and on the
function being approximated.

5 Two named relations. Bessel’s inequality: Plugging the value of ci back into the above and noting that
the expression is non-negative yields (dii = ‖φi‖2w, fi = 〈φi, f〉)

0 ≤ ‖f‖2w − 2
∑
i

f2i
dii

+
∑
i

f2i
dii
⇒

n∑
i=0

f2i
dii

= ‖p‖2w ≤ ‖f‖2w.

This means that the error is non-increasing (no surprise). Together with the fact that the error → 0 implies
Parseval’s equality

∞∑
i=0

f2i
dii

= ‖f‖2w.
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6 We’ve seen existence, uniqueness, construction, and a bit of convergence. In the construction it’s convenient
to have an orthogonal basis for the space of polynomials of degree ≤ n, orthogonal with respect to the inner
product/weight function being used. Consider the standard L2 norm (w(x) = 1) on [−1, 1]. We need a basis
for the vector space of polynomials of degree ≤ n. The standard one is monomials {1, x, · · · , xn}, but this
basis is not orthogonal with respect to the L2 inner product. But we can use Gram-Schmidt to construct
such a basis

φ0(x) = 1

φ1(x) = x−
∫ 1

−1(1)(x)dx∫ 1

−1(1)2
(1) = x

φ2(x) = x2 −
∫ 1

−1(1)(x2)dx∫ 1

−1(1)2
(1)−

∫ 1

−1(x)(x2)dx∫ 1

−1(x)2
(x) = x2 − 1

3

etc. The above polynomials are not orthonormal, but follow the common convention to write whatever
basis you’re using so that the coefficient of the highest-order term is 1 (‘monic’).

It’s clear that you can always construct an orthonormal basis by applying Gram-Schmidt to the monomial
basis. This is not always the best way to construct the basis functions, but it works. It also just constructs
one of an infinite number of orthogonal bases for polynomials with a given weight function; if you start
with a different basis and apply Gram-Schmidt, you’ll get a different orthonormal basis. Applying Gram-
Schmidt to the monomial basis always produces an orthogonal basis that has increasing degree, i.e. φk(x) is
a polynomial of degree k.

Some bases that result from applying Gram-Schmidt to monomials are

• [−1, 1], w(x) = 1: Legendre

• [−1, 1], w(x) = 1/
√

1− x2: Chebyshev (singular weight function)

• [−1, 1], w(x) = (1 − x2)m−1/2, m > −1/2: Gegenbauer (aka ‘ultraspherical’ polynomials; appear in
spherical harmonics; contains Chebyshev and Legendre)

• [−1, 1], w(x) = (1−x)α(1 +x)β , α, β > −1: Jacobi (contains Gegenbauer; draw some weight functions
to show that you can penalize errors in different parts of the interval)

• [0,∞), w(x) = e−x: Laguerre (often the basis is written as ‘Laguerre functions e−x/2φk(x) where φk(x)
is the Laguerre polynomial)

• [−∞,∞], w(x) = e−x
2

: Hermite H (for physicists; if weight is e−x
2/2 polynomials are He(x) for

probabilists; often written as ‘parabolic cylinder functions’)

It’s important to note:

• Once you pick a weight function and a polynomial degree, the optimal polynomial is unique. The
optimal polynomial for one weight function is different from the optimal polynomial for a different
weight function.

• The optimal polynomial can be represented in any basis (of which there are an infinite number). So
if you pick w(x) = 1, a convenient/orthogonal basis in which to compute the solution is the Legendre
polynomials. But you could write the optimal polynomial in any basis you want, e.g. monomials or
Chebyshev or Gegenbauer, or whatever.
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7∗ The term ‘orthogonal polynomials’ (referring to orthogonal bases) is quite broad, but almost always
refers to a basis that has increasing degree i.e. φk(x) is a polynomial of degree k (which is what results from
applying Gram-Schmidt to monomials). Such bases share a wide range of useful properties regardless of the
weight function. For example, they all have a three-term recurrence (Atkinson 4.5).

φk+1(x) = (x− βk)φk(x)− γ2k−1φk−1(x)

where

βk =
〈xφk(x), φk(x)〉
‖φk(x)‖2w

, γ2k−1 =
‖φk‖2w
‖φk−1‖2w

. ‘Darboux’s formulas’

The initial values are φ−1 = 0 and φ0 = 1. Proof by induction (This proof is based on the one in D&B, but
their proof mangles the induction):

• φ1(x) = x− β0. We simply need to check that it’s of degree 1 (obvious) and orthogonal to φ0(x) = 1.
By construction,

〈φ0, φ1〉 = 〈φ0, x− β0〉 = 〈φ0, (x− β0)φ0〉 = 〈xφ0, φ0〉 − β0〈φ0, φ0〉 = 0.

• Now, by construction φk+1 has degree k + 1. We need to show that it’s orthogonal to all previous φj ,
and we can assume that the previous ones are an orthogonal basis.

Using the definition of φk+1, take the inner product with φj

〈φj , φk+1〉 = 〈φj , xφk〉 − βk〈φj , φk〉 − γ2k−1〈φj , φk−1〉.

Now notice that 〈xf, g〉 = 〈f, xg〉 for any functions f and g (for this kind of inner product), so

〈φj , φk+1〉 = 〈xφj , φk〉 − βk〈φj , φk〉 − γ2k−1〈φj , φk−1〉.

Now xφj is a polynomial of degree j + 1. Since φk is orthogonal to any polynomial of lower degree, we
have

〈φj , φk+1〉 = 0 for j ≤ k − 2.

We still need to show that φk+1 is orthogonal to φk and φk−1. Plugging in j = k

〈φk, φk+1〉 = 〈xφk, φk〉 − βk〈φk, φk〉 − γ2k−1〈φk, φk−1〉 = 0

Next use the definition of βk and the fact that φk is orthogonal to φk−1 to find 〈φk, φk+1〉 = 0. Now
plugging in j = k − 1

〈φk−1, φk+1〉 = 〈xφk−1, φk〉 − γ2k−1〈φk−1, φk−1〉.

This would only be zero if 〈xφk−1, φk〉 = ‖φk‖2w. Fortunately that is true, as we now show. Consider
(by definition)

φk = (x− βk−1)φk−1 − γ2k−2φk−2.

Take the inner product with φk and use orthogonality of φk to all previous ones (which we’re allowed
to assume by the induction hypothesis) to arrive at

‖φk‖2w = 〈φk, xφk−1〉.

QED!
It’s often possible to find explicit expressions for the coefficients βk and γ2k. For example Legendre:

Pk+1(x) =
2k + 1

k + 1
xPk(x)− k

k + 1
Pk−1(x)

Generally you can just look these up, e.g. in the DLMF. The three-term recursion can be used to construct
the basis functions and to compute their values at specific points x.
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8∗ Just like with interpolation, once you find the polynomial you want, you still need to evaluate it.

p(x) = a0 + a1x+ . . .+ anx
n

= a0 + x [a1 + x[a2 + . . .+ x[an−1 + xan] . . .]] .

Evaluating a polynomial with this nested approach is called ‘Horner’s method.’ It’s faster than the naive
method of evaluating each term akx

k separately and then adding them up.
The monomial basis is a convenient basis for evaluating a polynomial because of Horner’s algorithm: you

can evaluate a polynomial of degree n with O(n) flops. But the monomial basis is highly inconvenient for
finding a least-squares approximation, because the associated linear system for the coefficients is typically
very badly conditioned. So what are you supposed to do? Find the coefficients in one basis, then convert to
coefficients in another basis? It typically costs O(n2) to convert from one set of basis coefficients to another,
so this would be a very-costly way to evaluate the polynomial.

It turns out that there is a fast algorithm to evaluate a polynomial when you have the coefficients in
a basis that has a three-term recurrence, and all triangular orthogonal bases have three-term recurrences.
Clenshaw’s algorithm (not in Atkinson; see D&B). Suppose you need to evaluate a sum of the form

S =

n∑
i=0

ckpk

where the ck are known. Suppose that you have a 3-term recurrence of the form (ak depends on x, but the
notation doesn’t reflect this for the sake of simplicity)

pk+1 = akpk + bkpk−1, p−1 = 0.

Write this in matrix form
1
−a0 1
−b1 −a1 1

. . .
. . .

. . .

−bn−1 −an−1 1




p0
p1
...
pn

 = p0


1
0
...
0

⇔ Lp = p0e1.

Write the polynomial as

p(x) =
∑
i

ckpk(x) = S = cTp = p0c
TL−1e1.

Swap the order around a bit (since S is scalar)

S = p0e
T
1 (L−T c).

So to compute S, backsolve an upper-triangular system with bandwidth 2, keep only the first element of
the solution, and multiply by p0. The backsolve can be done in O(n) floating-point computations. It seems
that the only benefit to taking the transpose is to reduce storage cost; both methods are O(n) floating-point
computations.

9 Another property that will be used in the quadrature section is the following (Atkinson 4.4).

Let {φn(x)} be a family of orthogonal polynomials with degree φn(x) = n. Then φn(x) has
exactly n simple roots in the interval [a, b].

We will prove this by contradiction; our tools will be (i) the fundamental theorem of algebra, and (ii) that
φn(x) is orthogonal to all polynomials of lower degree. First define some notation: let x1, . . . , xm be the
roots of φn(x) that lie in [a, b] and for which φn(x) changes sign (i.e. odd order roots). We will prove that
m = n, but at this point m could be anything including 0. Now define

B(x) = (x− x1) · · · (x− xm).

9



This is a polynomial of degree m. Now consider

B(x)φn(x).

This is a polynomial of degree m + n, but more importantly, it has a single sign on [a, b]. This is because
B(x) was constructed to change sign at every place where φn(x) changes sign. Now consider

〈B(x), φn(x)〉 =

∫ b

a

B(x)φn(x)w(x)dx.

If m < n then this has to be zero, because φn(x) is orthogonal to every polynomial of lower degree. On the
other hand, the integrand is positive (except possibly on a set of measure zero). So the only way that the
inner product can be positive is when the m = n, i.e. φn(x) has exactly n simple roots in [a, b].

10∗ There are lots of other properties of orthogonal polynomials. They are eigenfunction solutions of second-
order boundary-value problems (the most general setting is Sturm-Liouville theory (in Applied Analysis)).
They can be computed using a ‘Rodrigues formula’

φn(x) =
1

w(x)

dn

dxn
[w(x)(g(x))n]

where g(x) is a polynomial independent of n. Etc. You can look up these properties in any book on orthog-
onal polynomials.

Fourier & Chebyshev Least-squares Approximations

1 The most important family of orthogonal polynomials is the Chebyshev polynomials. To understand them
it is best to first understand Fourier series, so we will discuss Fourier approximation. We are seeking to find
a trig polynomial

p(x) = a0 +

n∑
j=1

[aj cos(jx) + bj sin(jx)]

that minimizes the unweighted L2 error for some function f ∈ C[−π, π]. Notice that the subspace we’re
seeking a solution in is finite-dimensional, so a solution must exist (by the same argument as for polynomials).
Furthermore, notice that our basis for the space of trig polynomials is already orthogonal in the unweighted
L2 inner product:∫ π

−π
sin(jx) cos(kx)dx = 0 for any j, k,

∫ π

−π
sin(jx) sin(kx)dx = 0 unless j = k

∫ π

−π
cos(jx) cos(kx)dx = 0 unless j = k

(If j = k we have π.) The solution formula therefore follows immediately from the exact same arguments
used for the polynomial case:

a0 =
1

2π

∫ π

−π
f(x)dx =

〈1, f〉
‖1‖

aj =
1

π

∫ π

−π
f(x) cos(jx)dx =

〈cos(jx), f〉
‖ cos(jx)‖

bj =
1

π

∫ π

−π
f(x) sin(jx)dx =

〈sin(jx), f〉
‖ sin(jx)‖

These are just the usual L2 approximation coefficients for a orthogonal basis. The solution is unique, just
like the polynomial problem.

2 We’ve seen existence & uniqueness for Fourier approximation. Now what about convergence? In general
this is a delicate subject, which you will see more of in PDEs and/or Applied Analysis. We first quote the
Riesz-Fisher theorem:
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If f(x) ∈ L2([−π, π]) then limn→∞ ‖f − p‖2 = 0.

So the 2-norm of the error goes to 0 for a huge class of functions including discontinuous functions.

Another theorem (D&B 4.6.2)

If f(x) is of bounded variation and has a finite number of discontinuities then pn(x) → f(x)
at every x ∈ [−π, π) except points of discontinuity, where p(x) converges to the average of the
values on either side of the discontinuity.

Now suppose that f and all its derivatives up to order p ≥ 1 are continuous and periodic on [−π, π).
Then p(x) converges pointwise to f(x) according to the theorem above. How quickly does it converge? We
can write

f(x) = a0 +

∞∑
j=1

[aj cos(jx) + bj sin(jx)]

so

f(x)− pn(x) =

∞∑
j=n+1

[aj cos(jx) + bj sin(jx)].

‖f(x)− pn(x)‖∞ ≤
∞∑
n+1

(|aj |+ |bj |).

Consider the following:

aj =
1

π

∫ π

−π
f(x) cos(jx)dx = − 1

jπ
[f(π) sin(jπ) + f(−π) sin(jπ)] +

1

jπ

∫ π

−π
f ′(x) sin(jx)dx

aj =
1

π

∫ π

−π
f(x) cos(jx)dx =

1

jπ

∫ π

−π
f ′(x) sin(jx)dx

I used integration by parts and sin(jπ) = 0. Applying the same idea to bj yields

bj =
1

jπ
[f(π) cos(jπ)− f(−π) cos(jπ)]− 1

jπ

∫ π

−π
f ′(x) cos(jx)dx.

If we assume that f is periodic then f(π) = f(−π) and we get

bj = − 1

jπ

∫ π

−π
f ′(x) cos(jx)dx.

If f is periodic and f ′ ∈ C[−π, π] we can bound the coefficients:

|bj |, |aj | ≤
maxx |f ′(x)|

jπ
.

If f ′ is both continuous and periodic then we can integrate by parts again to get

|bj |, |aj | ≤
maxx |f ′′(x)|

j2π
.

(We are clearly also assuming that ‖f ′′‖∞ is finite.) If the function is periodic and has p continuous
derivatives, then continuing this process of integration by parts yields bounds of the form

|bj |, |aj | ≤
maxx |f (p+1)(x)|

jp+1π
.

(We are clearly also assuming that ‖f (p+1)‖∞ is finite.) Returning to the approximation error,

‖f(x)− pn(x)‖∞ ≤
2‖f (p+1)‖∞

π

∞∑
n+1

j−p−1 ∼ n−p.

11



So the rate of convergence depends on the smoothness of f . If f ∈ C∞[−π, π] and periodic, then the coeffi-
cients decay faster than any power of j.

3 Before returning to Chebyshev polynomials, we need some background. An ‘even’ function satisfies
f(−x) = f(x) for every x; cosine is even. An ‘odd’ function satisfies f(−x) = −f(x); sine is odd. Any
function can be written as a sum of even and odd parts:

f(x) =
1

2
(f(x) + f(−x)) +

1

2
(f(x)− f(−x)).

If you multiply an even function by an odd function the product is odd. Any other product is even. The
derivative of an odd function is even, and vice versa. The integral of an odd function over [−a, a] is zero for
any a. Thus, if f is even, then bj = 0 for every j. If f is odd, then aj = 0 for every j ≥ 0.

4 Chebyshev. Consider the functions

Tn(x) = cos(n arccos(x)).

We will show that Tn is a polynomial of degree n. To do this, we will show that

cos(nθ) =

n∑
j=0

cj cos(θ)j .

If we let θ = arccos(x) then we will have

cos(n arccos(x)) =
∑
j

cjx
j .

First note that we can write Euler’s formula in 2 different ways:

einθ = (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).

Expand the middle part

cos(θ)n+

(
n
1

)
cos(θ)n−1(i sin(θ))+

(
n
2

)
cos(θ)n−2(i sin(θ))2+. . .+

(
n

n− 1

)
cos(θ)(i sin(θ))n−1+(i sin(θ))n.

(
Binomial expansion. Recall that

(
n
k

)
=

n!

k!(n− k)!
.

)
The real part of this expression equals cos(nθ). Notice that the real terms all have even powers of sin(θ)
which can be turned into expressions of cosine via sin2 = 1− cos2. This proves that cos(nθ) can be written
as a polynomial in cos(θ). Now consider the highest power of cos(θ). Every term has combined cosine and
sine powers equal to n; when you convert sine squared to cosine squared you don’t raise the exponent, so the
highest power of cos(θ) in the expression for cos(nθ) is n. This proves that Tn(x) is a polynomial of degree
≤ n: technically we also need to show that the leading coefficient is nonzero. This is relatively easy to show.
Only the even powers of i sin(θ) are real and need to be converted to cos2, so consider

(i sin(θ))2p = (−1)p(1− cos2(θ))p = (−1 + cos2(θ))p.

After converting all the sin2p(θ) to cosines, the coefficients of cosn(θ) are all positive, so the degree of the
trig polynomial is exactly n.
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5 Now we want to show that the polynomials Tn(x) are orthogonal with respect to the weight function
w(x) = 1/

√
1− x2 on the interval [−1, 1]. ∫ 1

−1

Tj(x)Tk(x)√
1− x2

dx =??

As usual with Chebyshev polynomials, it’s easiest to address the problem after a change of variable. Let
x = cos(θ), so dx = − sin(θ)dθ and Tn(x) = cos(n arccos(x)) = cos(n arccos(cos(θ))) = cos(nθ). As x moves
from −1 to 1, θ moves from −π to 0. Also, 1− x2 = 1− cos(θ)2 = sin2(θ). So∫ 1

−1

Tj(x)Tk(x)√
1− x2

dx = −
∫ 0

−π
sin(θ)

cos(jθ) cos(kθ)

| sin(θ)|
dθ =

∫ 0

−π
cos(jθ) cos(kθ)dθ = 0 unless j = k.

If j = k we have ‖Tj(x)‖2 = π/2. The penultimate equality uses that sin(θ) is negative over the interval in
question, and the final equality uses the fact that cos(jθ) cos(kθ) is even so the integral from −π to 0 is just
half the integral from −π to π, which is zero. We have now established that Tn(x) are polynomials of degree
n, and are orthogonal under the weighted inner product.

6 Using the previously-derived expressions for the optimal polynomial, we have that

p(x) =
∑
j

cjTj(x), cj =
〈Tj , f〉
‖Tj‖2

.

Recall that ‖Tj‖2 = π/2. Consider the coefficients a bit more carefully:

cj =
2

π
〈Tj(x), f(x)〉 =

2

π

∫ 1

−1

Tj(x)f(x)√
1− x2

dx.

Let’s make the same change of variable:

2

π

∫ 1

−1

Tj(x)f(x)√
1− x2

dx =
2

π

∫ 0

−π
cos(jθ)f(cos(θ))dθ.

To evaluate the above integral we only need to know f on [−1, 1], i.e. θ ∈ [−π, 0]. Make an even extension
of f so that

f̃(θ) =

{
f(cos(θ)) θ ∈ [−π, 0]
f(cos(−θ)) θ ∈ [0, π]

}
= f(cos(θ))

Then the above integral is just

cj =
2

π

∫ 1

−1

Tj(x)f(x)√
1− x2

dx =
2

π

∫ 0

−π
cos(jθ)f(cos(θ))dθ =

1

π

∫ π

−π
cos(jθ)f̃(θ)dθ.

You should recognize that this is the Fourier coefficient aj for the even function f̃ .

The Chebyshev Series of f is the Fourier Series of f̃ .

We know that the Fourier series converges quickly in the ∞ norm for smooth periodic functions. Let’s
see how the smoothness of f relates to the smoothness of f̃ . First, note that f̃ is periodic. Then take the
derivative

df̃

dθ
= − sin(θ)f ′(cos(θ)).

This is an odd periodic function; as long as f ′ is continuous on [−1, 1], then f̃ ′(θ) is continuous on [−π, π].
The same holds for all higher derivatives, so

If f and all its derivatives up to & including p are continuous and f (p+1) is well-behaved then
the Chebyshev series converges at least as O(n−p) in the ∞ norm.

This shows that if you get to pick your weight function, then Chebyshev series are a very good choice.
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