
APPM 5600 Fall 2018 Final Exam

Remember to write your name! You are allowed to use a calculator. You are not allowed to
use the textbook or your notes or your neighbor. To receive full credit on a problem you
must show sufficient justification for your conclusion unless explicitly stated otherwise. You
may cite any theorem from Atkinson or from the lectures unless explicitly stated otherwise.

You must do the first problem. You must pick only two of the remaining problems. Each problem
is 15 points; there are 45 points total.

1. Quadrature Consider a quadrature of the form∫ h

−h
f(x)dx ≈ h(af(−h) + bf(0) + cf(h)) + dh2f ′(0).

(a) Find coefficients so that the quadrature integrates all cubic polynomials exactly.

Solution: In order to integrate all cubic polynomials exactly we need to integrate all mono-
mials up to x3 exactly. This leads to the following linear system:

h


1 1 1 0
−h 0 h h
h2 0 h2 0
−h3 0 h3 0




a
b
c
d

 =


2h
0
2h3

3
0

 .

The second and fourth equations together imply that d = 0, which allows us to reduce the
system to

h


1 1 1
−h 0 h
h2 0 h2

−h3 0 h3


 a

b
c

 =


2h
0
2h3

3
0

 .

The second and fourth rows are now linearly dependent so we can instead consider (also
cancelling factors of h in each row) 1 1 1

−1 0 1
1 0 1

 a
b
c

 =

 2
0
2
3

 .

Row reducing yields a = 1/3, b = 4/3, c = 1/3. This method is just Simpson’s rule.

(b) The above quadrature is equivalent to using Hermite interpolation with the available data,
and the quadrature error is therefore∫ h

−h
f(x)dx− h(af(−h) + bf(0) + cf(h))− dh2f ′(0) =

∫ h

−h

(x2 − h2)x2

4!
f (4)(ξ(x))dx.

Use this to find an asymptotic formula for the error in the limit h→ 0.

Solution: The function (x2 − h2)x2 is negative semi-definite on the interval of integration,
so we can use the integral mean value theorem to write∫ h

−h

(x2 − h2)x2

4!
f (4)(ξ(x))dx = f (4)(η)

∫ h

−h

(x2 − h2)x2

4!
f (4)(ξ(x))dx = −h

5

90
f (4)(η)
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for some unknown η in (−h, h). In the limit h→ 0 we just have

error ∼ −h
5

90
f (4)(0).

(c) Consider a composite quadrature for integrals on [a, b] based on repeated use of the above
formula. Use the asymptotic error estimate derived above to form a ‘corrected’ composite
quadrature similar to the corrected Trapezoid Rule, assuming you know the values of f (3)(a)
and f (3)(b).

Solution: The error in the composite rule is

Error = − h4

180

[
2h
∑
i

f (4)(ηi)

]

The formula in square brackets is a Riemann sum (actually a midpoint rule) applied to∫ b
a f

(4)(x)dx. In the limit h→ 0 we have

Error ∼ − h4

180

[
f (3)(b)− f (3)(a)

]
.

We form a ‘corrected’ composite rule by adding this back in:

Corrected Rule = Composite Simpson’s Rule − h4

180

[
f (3)(b)− f (3)(a)

]
.

2. Linear Systems Suppose that the LU factorization of A can be computed without pivoting.
Let

A =

[
Â d
cT α

]
, c,d ∈ Rn−1, α ∈ R

and assume that Â = L̂Û, the LU-factorization of Â, has already been computed. Explain how to
use this to compute the LU factorization of A. (Note that this can be used to recursively compute
an LU factorization by computing LU factorizations of the upper-left k×k blocks with increasing k.)

Solution: The LU factorization of A has the form

A =

[
Â d
cT α

]
=

[
L̂ 0
lT 1

] [
Û u
0T u

]
=

[
L̂Û L̂u

lT Û lTu + u

]
Matching blocks yields the following systems:

L̂u = d⇒ u = L−1d

Û
T
l = c⇒ l = U−Tc

lTu + u = α,⇒ u = α− lTu

To compute the missing components of the LU factorization of A, first compute l and u by solving
the appropriate lower-triangular systems, then find u = α− lTu.
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3. Rootfinding/Nonlinear Equations Consider the fixed-point iteration xk+1 = 2xk−1. (Recall
2x = ex ln(2).)

(a) What are the fixed points?
Solution: The fixed points of 2x = 2x are x = 1, 2.

(b) Which fixed points are stable, i.e. locally convergent?
Solution: g(x) = 2x−1, g′(x) = ln(2)2x−1. Plugging in the fixed points g′(1) = ln(2) and
g′(2) = 2 ln(2). The first is stable since | ln(2)| < 1 while the second is unstable since
|2 ln(2)| > 1.

(c) For each fixed point, what is the order of convergence (i.e. linear, quadratic, etc)?
Solution: Convergence is linear for x = 1 since g′ 6= 0. There is no convergence at x = 2.

(d) Formulate Newton’s method for f(x) = x− 2x−1. What is the order of convergence for each
root?
Solution: Newton’s method is

xk+1 = xk −
f(xk)

f ′(xk)
.

Here f ′(x) = 1− ln(2)2x−1, so

xk+1 = xk −
xk − 2xk−1

1− ln(2)2xk−1
=

2xk−1(1− xk ln(2))

1− ln(2)2xk−1
.

The function is smooth and both the roots are simple (f ′(1) 6= 0 and f ′(2) 6= 0) so Newton’s
method will converge quadratically for both roots.

4. Interpolation

(a) Let x1, . . . , xn be n distinct points, and suppose that pn−1(x) interpolates f(x) at x1, . . . , xn−1
while qn−1(x) interpolates f(x) at x2, . . . , xn (p and q are polynomials of degree ≤ n − 1).
Show that

pn(x) =
(x− x1)qn−1(x)− (x− xn)pn−1(x)

xn − x1
is a polynomial of degree ≤ n that interpolates f(x) at x1, . . . , xn.

Solution: First note that pn is a sum of polynomials of degree at most n, so it is a polynomial
of degree at most n. Second note:

pn(x1) =
−(x1 − xn)pn−1(x1)

xn − x1
= f(x1)

pn(xn) =
(xn − x1)qn−1(xn)

xn − x1
= f(xn)

pn(xj) =
(xj − x1)qn−1(xj)− (xj − xn)pn−1(xj)

xn − x1
=

(xj − x1)− (xj − xn)

xn − x1
f(xj) = f(xj)

(b) The above fact can be used to develop a recursive algorithm for finding an interpolating
polynomial. Consider the following table

x1 f1
x2 f2 P1,2(x)
x3 f3 P2,3(x) P1,2,3(x)
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where P1,2(x) interpolates f(x) at points x1 and x2, P2,3(x) interpolates at x2 and x3, and
P1,2,3(x) interpolates at all the points. Assume that the nodes are −1, 0, 1 and values are
f(−1) = −1, f(0) = 0, f(1) = 1, and give explicit expressions for all 3 P polynomials in the
table above using the recursion from (a).

Solution: Putting values into the table:

−1 −1
0 0 x

1 1 x (x+1)x−(x−1)x
2 = x

(c) The above table can also be used to compute values of the interpolating polynomial. Add
another point x4 = 2 with value f4 = f(2) = 8. Without computing the new interpolating
polynomial, use the table to compute the value of the interpolating polynomial at x = 1/2.
Solution: We will need to plug in for x = 1/2 in the third column, so we need to figure out
the polynomial in the third column, fourth row:

−1 −1
0 0 x
1 1 x P1,2,3(x)
2 8 −6 + 7x P2,3,4(x) P1,2,3,4(x)

Next we plug in x = 1/2:

−1 −1
0 0 1

2
1 1 1

2 P1,2,3(
1
2)

2 8 −5
2 P2,3,4(

1
2) P1,2,3,4(

1
2)

Now compute

P1,2,3(1/2) =
(1/2 + 1)(1/2)− (1/2− 1)(1/2)

2
=

1

2
and similarly for

P2,3,4(1/2) =
(1/2− 0)(−5/2)− (1/2− 2)(1/2)

2
= −1

4

Finally

P1,2,3,4(1/2) =
(1/2 + 1)(−1/4)− (1/2− 2)(1/2)

3
=

1

8

5. Approximation

(a) Find the coefficients aj and bj to minimize∫ π

−π

(
cos((n+ 1)x)−

[
a0 +

n∑
i=1

aj cos(jx) + bj sin(jx)

])2

dx.

Solution: The coefficients are

a0 =
1

2π

∫ π

−π
cos((n+ 1)x)dx = 0, aj =

1

π

∫ π

−π
cos((n+ 1)x) cos(jx)dx = 0

bj =
1

π

∫ π

−π
cos((n+ 1)x) sin(jx)dx = 0
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(b) Let p(x) be the trig polynomial of degree at most n that minimizes
∫ π
−π(f(x)− p(x))2dx for

some periodic, continuously-differentiable f . Show that q(x) = p′(x) is the trig polynomial of
degree at most n that minimizes

∫ π
−π(f ′(x)− q(x))2dx.

Solution: Denote the optimal approximations to f and f ′ by

p(x) = a0 +
n∑
j=1

aj cos(jx) + bj sin(jx)

q(x) = c0 +
n∑
j=1

cj cos(jx) + dj sin(jx).

The coefficients are, by definition

c0 =
1

2π

∫ π

−π
f ′(x)dx =

1

2π
(f(π)− f(−π)) = 0.

cj =
1

π

∫ π

−π
f ′(x) cos(jx)dx =

j

π

∫ π

−π
f(x) sin(jx)dx = jbj

dj =
1

π

∫ π

−π
f ′(x)sin(jx)dx = − j

π

∫ π

−π
f(x) cos(jx)dx = −jaj

It is now trivial to note that p′(x) is exactly equal to q(x).

(c) Let p(x) be the polynomial of degree at most n ≥ 1 that minimizes
∫ 1
−1(f(x)− p(x))2dx for

some continuously-differentiable f . Show by example that the polynomial q(x) of degree at
most n− 1 that minimizes

∫ 1
−1(f

′(x)− q(x))2dx is not necessarily p′(x).

Solution: Let n = 1 and f(x) = x2. The optimal linear n = 1 least-squares approximation
to f(x) is

p(x) =
1

3
.

The optimal constant n = 0 approximation is just

q(x) = p(x) =
1

3
6= p′(x) = 0.
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