Pretest APPM 5450 Spring 2016 Applied Analysis 2

Instructor: Dr. Becker

Instructions: Take this *quickly* without spending over 30 minutes. It will not be graded and is intended to help you find weaknesses from last semester. These are mainly True/False questions:

- 1. A norm is a convex function _____
- 2. limsup is always well-defined _____
- 3. If T is linear and $x_n \to x$, then $T(x_n) \to T(x)$ _____
- 4. If f is continuous over a compact set K, then it is also uniformly continuous _____
- 5. If f is continuous and G is an open set in its domain, then f(G) is open as well _____
- 6. A separable space also compact ____
- 7. A compact space separable _____
- 8. If (f_n) is a sequence of continuous functions converging to f pointwise, then f is also continuous _____
- 9. If X is a metric space, then C(X) is a Banach space _____
- 10. Polynomials are dense in C([a, b])
- 11. C([a, b]) is separable _____
- 12. If K is compact, then a subset of C(K) is pre-compact if it is bounded _____
- 13. Let X be a complete metric space and $T: X \to X$ satisfy d(T(x), T(y)) < d(x, y) for all $x, y \in X$, then $\exists ! x$ such that x = Tx _____
- 14. Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X, then the identity mapping $\mathcal{I}: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ is continuous
- 15. For which p is $\ell^p(\mathbb{N})$ a normed linear space? Banach space? Hilbert space?
- 16. $C^k([a, b])$ is a Banach space with the uniform norm?
- 17. A subspace is necessarily a closed set ____
- A Hamel basis is such that every element of the space can be written as a finite linear combination of basis elements _____
- 19. Every Banach space has a Schauder basis _____
- 20. If X and Y are normed linear spaces and M is a dense subspace of X, and $T \in \mathcal{B}(M, Y)$, then there is a unique extension of T to all of X _____
- 21. Let $T \in \mathcal{B}(X, Y)$ for Banach spaces X and Y, then T^{-1} is bounded as well _____
- 22. The right-shift operator S on ℓ^{∞} is one-to-one _____
- 23. The right-shift operator S on ℓ^{∞} is onto _____

- 24. Let X and Y be Banach and $T \in \mathcal{B}(X, Y)$, then if the kernel of T is trivial, there exists c > 0 such that $\forall x, ||Tx|| \ge c||x||$
- 25. Let X be a normed linear space, then its dual $X^* = \mathcal{B}(X, \mathbb{R})$ a Banach space.
- 26. $x_n \rightharpoonup x$ means $\forall \varphi \in X^*, \varphi(x_n) \rightarrow \varphi(x)$ _____
- 27. Let $(T_n) \subset \mathcal{B}(X, Y)$, then if $||T_n T|| \to 0$, we say (T_n) converges *strongly* _____
- 28. An operator $T \in \mathcal{B}(X,Y)$ is called *compact* if it maps bounded sets $B \subset X$ to compact sets $T(B) \subset Y$
- 29. A compact operator has finite rank _____
- 30. In finite dimensions, weak convergence implies strong convergence _____
- 31. We say a sequence $(\varphi_n) \subset X^*$ converges to φ in the weak-* sense if it converges weakly with respect to X^{**} , that is, $\forall f \in X^{**}$, $f(\varphi_n) \to f(\varphi)$
- 32. In a reflexive Banach space, the closed unit ball in X^* is weakly compact _____