
Homework 13
APPM 5450 Spring 2018 Applied Analysis 2

Due date: THIS HOMEWORK IS OPTIONAL (i.e., not graded) Instructor: Prof. Becker
Theme: Measurable theory, Lp spaces, convergence theorems

Reading You are responsible for reading the rest of chapter 12 in the the book, and skimming chapter 13.

Problem 1: Let (fn)∞n=1 be a sequence of real-valued measurable functions on R such that |fn(x)| ≤ 1 and
limn→∞ fn(x) = 1 for all x. Evaluate the following integral and make sure to justify your
calculation:

lim
n→∞

∫
R
fn(cos(x))e− 1

2 (x−2πn)2
dx.

For further practice on problems involving convergence theorems, please look at older exams for
APPM5450, and also at older analysis prelims. You will see that most of these exams involve
at least one question on limit theorems, reflecting their importance in the curriculum.

Problem 2: a) Problem 12.8 from the book: if fn → f pointwise almost everywhere, and |fn| ≤ g ∈ Lp,
prove limn→∞ ‖fn − f‖p = 0 (Note: you should assume 1 ≤ p <∞. The result is not true
for p =∞. Can you find a counter-example?).

b) Counterpart to 12.8: find an example of (fn) ⊂ Lp s.t. fn → f pointwise a.e., but the
sequence does not converge in the Lp norm. Your counter-example need only be for one p.

Problem 3: Problem 12.13 from the book
a) Prove L∞(X) is not separable (and note that this is independent of whether µ(X) is finite

or infinite).
b) Prove C([0, 1]) is not dense in L∞([0, 1]).

Problem 4: Problem 12.17: prove the unit ball in Lp([0, 1]) is not compact (i.e., in the strong topology).

Problem 5: Problem 12.18 from the book: find a bounded sequence in L1([0, 1]) that does not have a
weakly convergent subsequence, and explain why this doesn’t violate Banach-Alouglu (in either
the form given in chapter 12, or in Theorem 5.61).

Problem 6: Take the final exam from the 2014 class. Simulate real test conditions: study for the test, then
take the test in one-sitting, closed book. The test is at
amath.colorado.edu/faculty/martinss/Teaching/APPM5450_2014s/final.pdf. You can find his
solutions at amath.colorado.edu/faculty/martinss/Teaching/APPM5450_2014s/final_solns.pdf.

Problem 7: Read problems 12.14 and 12.15 from the book (attempt if you like)

Problem 8: Problem 12.16 from the book. Use the book’s hint, and also recall the hint from exercise 11.10.
Don’t forget to provide the counter-example for L∞.

Problem 9: Term-by-term integration.
a) Use the (complete) Lebesgue measure. Let uk : [a, b] → R be integrable on [a, b] and

suppose
∑∞
k=1 uk(x) converges uniformly on [a, b], and define its limit as f(x). Prove that

f is integrable on [a, b] and that∫ b

a

f(x) dx =
∞∑
k=1

∫ b

a

uk(x) dx.
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b) Prove that a power series fN (x) =
∑N
n=1 cn(x − a)n, x ∈ R, converges uniformly to its

limit inside any closed interval inside the interval of convergence. (Define the radius of
convergence as the largest r ≥ 0 such that fN (x) converges absolutely/unconditionally
pointwise to its limit for all x ∈ (a− r, a+ r) and define the interval of convergence as the
open set (a− r, a+ r). It may or may not converge conditionally at the end-points)
Hint: use the Weierstrass M-Test. Recall the Weierstrass M-test: if (fn) is a sequence

of functions from a metric space X to R, and |fn(x)| ≤Mn for all x ∈ X and n ∈ N, then∑
n fn converges uniformly if

∑
nMn converges.

c) Rigorously prove the following Taylor series expansion for arctan

∀x ∈ [0, 1), arctan(x) =
∞∑
n=0

(−1)n x
2n+1

2n+ 1

Hint: Note that d/dx arctan(x) = 1/(1+x2), and find the Taylor series of 1/(1+x2) using,
e.g., the Neumann series.

Fact Term-by-term differentiation. (No work required). Suppose fn : [a, b] → R for n ∈ N has a
derivative on [a, b] (at a and b, we mean one-sided derivative), and fn → f pointwise. Our
question is: under what conditions do we have that f ′n → f ′ as well? This is not always true;
for example (from §5.4.3 in Hunter’s undergrad real analysis text
www.math.ucdavis.edu/~hunter/m125a/intro_analysis.pdf), define

fn(x) = x

1 + nx2

and fn → f = 0 uniformly, so f ′ = 0, but f ′n converges pointwise to the discontinuous function
ϕ 6= f ′ defined by ϕ(0) = 1 and ϕ(x) = 0 otherwise.
The appropriate theorem is that if if f ′n → ϕ uniformly, for some function ϕ, then f ′ = ϕ

(and hence f is differentiable, and in fact the fn must have converged to f uniformly). See also
corollary 12.36 in our book for other sufficient conditions.
For a power series, which is a very special type of sequence, we have stronger results. In

particular, inside the radius of convergence of a Taylor series of a function f , the function f is
C∞ and its derivative is given by the series of derivatives.
See https://www.dpmms.cam.ac.uk/~agk22/uniform.pdf for example, as well as chapter 6

of Hunter’s real analysis book.
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