
Homework 12
APPM 5450 Spring 2018 Applied Analysis 2

Due date: Friday, April 27 2018, before 1 PM Instructor: Prof. Becker
Theme: Measure theory

Instructions Problems marked with “Collaboration Allowed” mean that collaboration with your fellow
students is OK and in fact recommended, although direct copying is not allowed. The internet is allowed for
basic tasks. Please write down the names of the students that you worked with.
On problems marked “No Collaboration,” collaboration with anyone is forbidden. Internet usage is

forbidden, but using the course text is allowed, as well as any book mentioned on the syllabus. These
problems can be viewed as take-home exams.
An arbitrary subset of these questions will be graded.

Reading You are responsible for reading section 12.3–12.6 in the book.

Problem 1: No Collaboration Problem 12.4 from the text: Give an example of a monotonic decreasing
sequence of non-negative functions converging pointwise to f such that the result of the MCT
does not hold.

Problem 2: Let (fn)n∈N be a sequence of real-valued measurable functions from R to R such that limn→∞ fn(x) =
x for all x ∈ R, i.e., fn converges pointwise to the identity. Specify which of the following limits
necessarily exist, and give a formula for the limit in the cases where this is possible (which may
or may not depend on the exact sequence (fn)).
a) Collaboration Allowed

lim
n→∞

∫ 2

1

fn(x)
1 + fn(x)2 dx

b) No Collaboration

lim
n→∞

∫ 1

0

sin(fn(x))
fn(x) dx, where we define sin(0)/0 = 1

c) No Collaboration

lim
n→∞

∫ ∞

0

sin(fn(x))
fn(x) dx, where we define sin(0)/0 = 1

d) Collaboration Allowed

lim
N→∞

∫ 1

0

N∑
n=1

|fn(x)|
n2(1 + |fn(x)|) dx

e) No Collaboration

lim
N→∞

∫ ∞

0

N∑
n=1

1
n2(1 + |fn(x)|2) dx
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Problem 3: Collaboration Allowed Egorov’s Theorem. Let (fk) be a sequence of measurable functions
that converges almost everywhere on E to a finite limit f , and µ(E) <∞. Use the (complete)
Lebesgue measure. Prove:
a) Lemma. Given δ, ε > 0, prove there is a closed subset F ⊂ E and an integer K such that

µ(E \ F ) < ε and |f(x) − fk(x)| < δ for all k > K and x ∈ F . Hint: consider sets of the
form EK = {x | ∀k ≥ K, |f(x)− fk(x)| < δ}.

b) Egorov’s Theorem. Given ε > 0, prove there is a closed subset F ⊂ E such that µ(E \
F ) < ε and (fk) converges uniformly to f on F . This remarkable result says that, under
assumptions that the limit is finite and that µ(E) is bounded, then pointwise convergence
actually implies uniform convergence except on sets of arbitrarily small measure (though
not zero measure).

Problem 4: Collaboration Allowed Convergence in measure. Let (fn) be measurable functions which are
finite almost-everywhere on a set X. Then we say (fn) converges in measure on X to f if for
every ε > 0,

lim
n→∞

µ ({x ∈ X | |f(x)− fn(x)| > ε}) = 0.

We write this as fn
m→ f .

a) Let (fn) be measurable functions which are finite almost-everywhere on a set X. Suppose
fn converges pointwise a.e. to f , and µ(X) < ∞. Prove fn

m→ f . Note: in this problem,
we mean convergence pointwise within the topology on R, not R, so we would not say that
fn(x) = n converges to f(x) =∞.

b) Suppose µ(X) < ∞, does fn
m→ f imply fn converges to f pointwise almost-everywhere?

Prove it does, or provide a counter-example that it doesn’t.

Probability theory facts (no work required).
A probability space on an underlying set Ω (this is X in our more general notation) is just a
measure µ (often labeled p or P in this context) and σ−algebra such that µ(Ω) = 1. Measurable
sets correspond to events and measurable functions correspond to random variables. For exam-
ple, the expected value of a random variable f is just E[f ] def=

∫
Ω fdµ. There are many forms of

convergence of (fn) (see, e.g., Definition 11.49 in the text for convergence in distribution, i.e.,
weak convergence.). Some forms of convergence imply the others. See basic probability books
or http://en.wikipedia.org/wiki/Convergence_of_random_variables.

• fn
m→ f is called convergence in probability and often written fn

P→ f .

• Another example (cf. Wasserman’s “All of Statistics” book) is convergence almost
surely, written fn

as→ f , to mean the probability of convergence is 1, so this coincides
with our notion of convergence pointwise almost everywhere. Specifically, it means
P({x | fn(x)→ f(x)}) = 1.

• We say fn converges in quadratic mean to f if E |fn − f |2 → 0, written as fn
qm→ f .

Convergence in L1 is written as fn
L1

→ f , i.e., limn→∞ E |fn − f | = 0.

• Convergence in distribution is written fn  f . It means, where Ft is the CDF of ft,
that limn→∞ Fn(t) = F (t) for all t at which F is continuous. See Def. 11.49 in Hunter and
Nachtergaele; for absolutely continuous r.v., this is equivalent to weak convergence.

• Theorems: (from Wasserman, §5.2 and §5.7; a–b from Thm. 5.4m, c–e from Thm. 5.17)

a) fn
qm→ f implies fn

P→ f , but not vice-versa

b) fn
P→ f implies fn  f , but not vice-versa

c) fn
as→ f implies fn

P→ f (this is Problem 4(a); the lack of a converse is Problem 4(b)).
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d) fn
L1

→ f implies fn
P→ f

e) fn
qm→ f implies fn

L1

→ f

f) fn
P→ b does not imply E(fn) → b, e.g., let fn = n2 wp 1/n and 0 otherwise, so

P(|fn| < ε)→ 0 so fn
P→ 0, but E(fn) = n→∞.

Hence fn
qm→ f is a strong statement, and fn  f is a rather weak statement.

• We say a measure µ is absolutely continuous (with respect to Lebesgue λ, written
µ� λ) if there is a function p ∈ L1(R) such that

µ(A) =
∫
p(x) dλ

for every measurable set A. Note that µ(A) =
∫

1 dµ by definition. In other words, “it
has a pdf”, which means that the pdf is described by a normal function p ∈ L1, not a
distribution. In contrast, a discrete distribution does “not have a pdf” which means that,
with respect to Lebesgue, the pdf is not described by a normal function (rather, it needs
to use a distribution like the delta function).

• Informally, not using measure theory notation, we say a random variable X is continuous
if the probability X belongs to any singleton set is zero (in contrast to discrete random vari-
ables). This really relies on the underlying measure space, not just the measurable function.
It is absolutely continuous if every set of Lebesgue measure zero has zero probability.
Absolute continuity implies continuity, but not vice-versa, as one might expect from the
terminology (continuous but not absolutely continuous are rare, and are called “singu-
larly continuous random variables”, like the Cantor function/Devil’s staircase). See also
§11.12 in our book for a brief discussion, and see also our handout “Absolutely continuous
functions, Radon-Nikodym Derivative”.

• Warning: informally, people may write “random variable” to refer to all of a probability
space, and not really mean a measurable function on a probability space. Also, a “probabil-
ity distribution” usually refers to a probability space, and not the notion of “distribution”
we discussed in the Fourier Transform chapter.

• An absolutely continuous distribution need not have finite moments, e.g., the Cauchy
distribution, given by p(x) = 1

π(1+x2) , has no finite moments of order great than one. In
particular, the mean and variance are undefined! That is, E[X] is not finite!
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