
Homework 3
APPM 5450 Spring 2018 Applied Analysis 2

Due date: Friday, Feb 9 2018, before 1 PM Instructor: Prof. Becker
Theme: Projections and Bounded Linear Operators on Hilbert Space

Instructions Problems marked with “Collaboration Allowed” mean that collaboration with your fellow
students is OK and in fact recommended, although direct copying is not allowed. The internet is allowed for
basic tasks. Please write down the names of the students that you worked with.
On problems marked “No Collaboration,” collaboration with anyone is forbidden. Internet usage is

forbidden, but using the course text is allowed, as well as any book mentioned on the syllabus. These
problems can be viewed as take-home exams.
An arbitrary subset of these questions will be graded.

Reading You are responsible for reading sections 8.2 – 8.4 of the book.

Problem 1: No Collaboration Prove that if P is a projection on a Hilbert space H, then the following
three statements are equivalent:
a) P is orthogonal, i.e., ker(P ) = ran(P )⊥. [Do not use the book’s definition that P is

orthogonal iff P is a self-adjoint projection]
b) P is self-adjoint
c) ‖P‖ = 0 or 1

Hint: if you wish to prove c =⇒ a, you may want to consider x ∈ ran(P ) and y ∈ ker(P ), and
examine ‖x− ty‖2 as t→ 0 and t positive or negative depending on 〈x, y〉.

Problem 2: No Collaboration Problem 8.4: (Pn) is a sequence of orthogonal projections on H that have
nested ranges and ∪∞n=1 ran(Pn) = H. Prove Pn converges strongly to the identity, but does not
converge in the operator norm unless Pn = I for all n sufficiently large.

Problem 3: No Collaboration 8.6 from the book, second part only (show an invertible linear map from
Hilbert space H1 to Hilbert space H2 is unitary iff its inverse is unitary).

Problem 4: No Collaboration 8.15 parts a, b and e only.

Definition The book provides a definition of a coercive functional f : H → R. More generally, if A ∈
B(H), we say it is a coercive operator if there is a constant c > 0 such that 〈Ax, x〉 ≥ c‖x‖2

for all x ∈ H. We typically require A = A∗ before considering coerciveness, since otherwise it’s
not necessarily true that 〈Ax, x〉 is even a real number. Note that a coercive operator, which
is also assumed to be bounded and self-adjoint, generates a norm ‖x‖A =

√
〈x,Ax〉 that is

therefore equivalent to the norm of the Hilbert space, since

c‖x‖2 ≤ ‖x‖2
A = 〈x,Ax〉 ≤ ‖x‖‖Ax‖ ≤ ‖x‖2‖A‖.

Problem 5: No Collaboration Let H be a complex Hilbert space and (ϕn)n∈N an orthonormal basis for
H. Given a bounded sequence of complex numbers (λn)n∈N, define the operator A by setting

Au =
∞∑

n=1
λn〈ϕn, u〉ϕn.
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a) Prove ‖A‖ = supn |λn| (and don’t just prove ‖A‖ ≤ supn |λn|)
b) Prove A∗u =

∑∞
n=1 λn〈ϕn, u〉ϕn. Concluded that A is self-adjoint if and only if all λn are

real.
c) When is A skew-symmetric? When is it non-negative/positive/coercive?

Problem 6: Collaboration Allowed Consider the Hilbert space H = L2([−π, π]) and the operator A ∈
B(H) defined by (Au) (x) = |x|u(x).
a) Prove A is self-adjoint and positive, but not coercive.
b) Prove that

〈u, v〉A
def= 〈Au, v〉

is an inner product on H
c) Prove that the norm induced by this inner product generates a topology that is not equiv-

alent to the topology generated by the L2-norm.

Fact 1 Farkas’ lemma. This is a classic result from the early 20th century that underlies the duality
theory of linear programming. The proof uses a separating hyperplane result that is trivial in
finite dimensions, and in infinite dimensional spaces, it follows from the Hahn-Banach theorem.
Farkas’ lemma (aka Farkas’ Alternative) is stated in finite dimensions. It says that for any
matrix A ∈ Rm×n and vector b ∈ Rm, exactly one of the following conditions hold:
a) The set {x | Ax = b, x ≥ 0} is non-empty
b) The set {y | yTA ≥ 0, yT b < 0} is nonempty

Problem 7: Collaboration Allowed. Existence of an equilibrium distribution in finite-state
Markov chains Let P ∈ Rn×n be the transition matrix of a Markov chain. It is a stochastic
matrix, which means that

(∀ i, j = 1, . . . , n) (P )ij ≥ 0, and PT 1 = 1

i.e., each entry is non-negative and the columns sum to one. The vector of all ones is written 1.
The Markov chain describes the evolution of a probability vector xt, for t = 1, 2, . . ., where each
xt ∈ Rn is non-negative and sums to 1 (i.e., 1Txt = 1). The probability vector evolves according
to xt+1 = Pxt. A basic question is when does xt converge? If it does converge, it must clearly
converge to a fixed point x = Px (this x is also known as the equilibrium distribution). Thus
an even more basic question is when is there a fixed point solution? Prove, using the Farkas’
alternative, that there exists an equilibrium solution, e.g., there is a x such that

Px = x, x ≥ 0, 1Tx = 1

(In particular, note that x = 0 is not a valid distribution since it cannot be normalized to sum
to 1). Stronger guarantees can be made using the Perron-Frobenius theorem.

Fact 2 Fredholm alternative in finite dimensions. For any matrix A ∈ Rm×n and vector b ∈ Rm,
exactly one of the following conditions hold:
a) The set {x | Ax = b} is non-empty
b) The set {y | yTA = 0, yT b 6= 0} is nonempty

What this is saying is that Rm = ran(A)⊕ker(A∗) (no need to worry about closure of ran(A) in
finite dimensions, since it is always closed), and therefore if b ∈ ran(A) and hence b ⊥ ker(A∗), so
we have condition (a), or else not, so b is not perpendicular to everything in ker(A∗) (condition
(b)).

? Optional Deduce the Fredholm alternative from the Farkas alternative. Hint: you may want to consider
the matrix (in Matlab notation) [A,−A].
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Proof of Farkas’ lemma (in case you were curious)
If both alternatives occur, then x ≥ 0 and yTA ≥ 0, so yTAx = yT b ≥ 0, but this violates yT b < 0. Thus

at most one alternative occurs. We only need to show that if alternative (a) does not hold, the alternative
(b) does.
So supposing (a) is false, then the point b does not lie in the cone C ⊂ Rm generated by the columns of

A. (The columns of A are a set of vectors, and taking all non-negative combinations of these vectors, i.e.,
Ax for x ≥ 0, generates a cone). It is a fact that this cone is closed and convex. If b /∈ C, then there is a
plane that strictly separates any closed convex cone C from b /∈ C (in infinite dimensions, this would follow
from the Hahn-Banach theorem), e.g., there is some y ∈ Rm and β ∈ R such that

yT z + β > 0 ∀z ∈ C
yT b+ β < 0.

Pick any x ≥ 0, then for any λ > 0, define z = A(λx) so z ∈ C and hence λyTAx+ β > 0. Divide this by λ
and take the limit as λ→∞ to conclude

yTAx ≥ 0

which was true for all x ≥ 0, in particular we can pick x to be any of the unit vectors, and thus

yTA ≥ 0.

Since 0 ∈ C, then yT 0 + β > 0 so β > 0. Thus

yT b < −β < 0

and thus we have proved that y satisfies the second alternative. Proof from Joel Franklin
You can also prove Farkas’ lemma using duality theory for linear programming (or prove duality theory

for linear programming using Farkas’ lemma!)
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