
Final Exam Selected Solutions
APPM 5450 Spring 2015 Applied Analysis 2

Date: Thursday, May. 7 2015
Instructor: Dr. Becker Your name:
If the mathematical field is not specified, you may assume it is R or C at your convenience. The symbol

H denotes an arbitrary Hilbert space. Your proofs may use any major result discussed in class (if you are
unsure, please ask).

Total points possible: 104.
N.B. Unlike the homeworks, the grades may be curved. Points are not distributed according to difficulty.

When justifying your answer, do as little work as possible, e.g., avoid explicitly evaluating integrals if not
necessary. Partial credit is possible.

For problems 1 and 2, PLEASE WRITE DIRECTLY ON THIS SHEET

Problem 1: (20 pts) Definitions. State the following definitions and/or theorems. You may skip one
definition (please clearly mark which one should not be graded). 2 points each.

(1) Define the Sobolev space Hs(T) for s > 0.
(2) Sobolev embedding theorem, any version Solution: Hk(R) ⊂ C(R) for k > 1/2 (careful, you should

really specify R since for Rd you need k > d/2). Don’t confuse this with Riemann-Lebesgue! It’s not
in C0(R).

(3) Banach-Alouglu theorem, any variant
(4) Briefly define the Fourier transform on S(R) (the space of Schwartz functions). Solution: Via the

standard integral definition.
(5) Briefly define the Fourier transform on S(R)∗. Solution: In a weak sense, e.g., for T ∈ S(R)∗ define

T̂ s.t. for all ϕ ∈ S, 〈T̂ , ϕ〉 = 〈T, ϕ̂〉.
(6) Briefly define the Fourier transform on L2(R). Solution: The standard answer is that it is defined by

using the density of S and extending this via the BLT theorem. Valid alternatives: it is a diagonal
operator with respect to the Hermite functions, mapping coefficients (cn)n=0,1,... to ((−i)ncn)n=0,1,....
If you define it via the integral form, -1 points (the integral form is valid only if f ∈ L1 or f ∈ S).
Note that your answer should never contain any sums, only integrals. Remember: for L2(R), use the
Fourier transform and integrals, while for L2(T), use Fourier series and sums.

(7) What does it mean for (ϕn) ⊂ S to converge to a limit ϕ? Solution: It means for all α, β multi-indices,
then ‖ϕn − ϕ‖α,β → 0. The pseudo-norm is defined in eq. (11.3).

(8) Lebesgue dominated convergence theorem
(9) Fubini’s theorem
(10) Define what it means for a function f : X → Y to be measurable with respect to measure spaces

(X,A) and (Y,B).
(11) In the above definition, if Y = R and B is the Borel σ-algebra generated by the standard topology

on R, what is a simplified definition of a measurable function? Solution: That for all c ∈ R, the set
{x | f(x) < c} is measurable. (Equivalently, sets like {x | f(x) ≥ c}, etc., are also valid).

Problem 2: (30 pts) Mark true/false (or yes/no). No justification needed. H denotes a Hilbert space. 2
points each.

Solution: Most students did very well on this, but almost no one got question 6 correct.

(1) Let C,D ⊂ H. If C = D⊥, is C⊥ = D? Solution: False. This is only true if D is closed.
For example, let H = R2 and D = {qe1 | q ∈ Q} where e1 is the first canonical unit vector. Then
C = span(e2) so C⊥ = span(e1) = D 6= D.

1



(2) If µ(X) <∞, then Lp(X) ⊂ Lq(X) if p ≤ q. Solution: False.
(3) If µ(X) <∞, then Lp(X) ⊂ Lq(X) if p ≥ q. Solution: True.
(4) If µ(X) =∞, then Lp(X) ⊂ Lq(X) if p ≤ q. Solution: False.
(5) If µ(X) =∞, then Lp(X) ⊂ Lq(X) if p ≥ q. Solution: False.
(6) Is the Heaviside function H(x) = χ(0,∞)(x) weakly differentiable? Solution: No, since if it were,

it would violate the Sobolev embedding theorem, since weakly differentiable implies it is in H1 [sorry
for overloading the “H” symbol] but it is clearly not continuous. See example 11.13 in the book for
more discussion. It has a distributional derivative but not a weak derivative, and this is why we say
that sometimes ∂Tf is not the same as T∂f .

(7) Is it possible that in `1(N), weak convergence always implies strong convergence? Solution: Yes,
and in fact it is true (Schur 1924). If 1 < p <∞, this is not possible since `p is reflexive, so the Banach-
Alouglu theorem says the unit ball is weakly compact, and the unit ball in an infinite dimensional
space is never strongly compact. For p = 1, the space is not reflexive so this is not precluded (this is
what the question is getting at).

Note that we discussed this on problem 4b in HW 14 from last semester.
(8) Lp(R) is separable for all 1 ≤ p ≤ ∞. Solution: False, since this is not true for p =∞.
(9) Lp([0, 1]) is separable for all 1 ≤ p ≤ ∞. Solution: False, since this is not true for p =∞.
(10) C([0, 1]) is dense in L∞([0, 1]). Solution: False, since that would imply it is separable.
(11) C∞c (R) is dense in Lp(R) for 1 ≤ p <∞. Solution: True.
(12) Cc(R) is complete with respect to the uniform norm. Solution: False, for example a Cauchy

sequence may converge to e−x2 .
(13) Let f ∈ L2(T) and define the partial sum fN =

∑N
n=−N f̂nen where (en) is the Fourier basis. Does

‖f − fn‖L2 → 0 ? Solution: Yes.
(14) If f, g ∈ L1(R), is fg ∈ L1(R)? Solution: No.
(15) If f, g ∈ L1(R), is f ∗ g ∈ L1(R)? Solution: Yes, follows from Fubini’s theorem.

Problem 3: (12 pts) Short response. 2 points each. For examples of functions, don’t forget to specify their
domain.

(1) The space L2(T) contains periodic functions, but the functions are not defined pointwise because they
are really equivalence classes. If they are not defined pointwise, how can they be periodic? Briefly
discuss.

Solution: Because continuous functions are defined pointwise, we can easily define C(T). Then
define L2(T) as the closure of C(T) under the L2 norm.

(2) On I = [−π, π], f(x) = x is very smooth, i.e., f ∈ C∞(I), whereas g(x) = |x| is not a smooth, i.e.,
g ∈ C(I) \ C1(I). Do you expect the Fourier coefficients of f to decrease faster than those of g? Is
this true?

Solution: If we consider the periodic extension, then f is no longer even continuous, so f /∈ C(T),
whereas g ∈ C(T), so we actually expect the Fourier coefficients of g to decrease faster, which is what
we observe.

(3) Give an example of an operator that is positive but not coercive. Solution: If your example is of
a linear operator, then the space is necessarily infinite dimensional. Take `2(N) for example, and
define T (x) = (1/nxn) for x = (xn) ∈ `2. More generally, use any diagonal operator (in terms of an
orthonormal basis, or just on `2 coordinate-wise) such that A(x) = (anxn) and an > 0 but an → 0.

Another example is example 9.5, using (Tf)(x) = x · f(x) on L2([0, 1]). Since x ∈ [0, 1], we see
〈f, Tf〉 ≥ 0 always, but this can be arbitrarily small as the support of f clusters around 0.

This question was missed by a lot of students. One of the issues is positive vs. non-negative. We
say an operator T is “positive” or “positive definite” if 〈x, Tx〉 > 0 for all x, and it is “non-negative”
or “positive semi-definite” if we just have 〈x, Tx〉 ≥ 0.
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(4) Give an example of functions (fn) that converge pointwise a.e. to f but limn→∞
∫
fn 6=

∫
f . So-

lution: Many possibilities, e.g., in L1, take boxes supported on [0, 1/n] with height n so f = 0 and
limn→∞

∫
fn = 1 6= 0 =

∫
0. This question was answered correctly by most students.

(5) Give an example of a function that is Lebesgue integrable but not Riemann integrable.
Solution: The indicator function of the rational numbers.
Note that if a function is very nice and non-negative (so no cancellations happen), then the

integrals will be the same. So it’s not the case that, say, f(x) = x−1/2 over [0,∞) is Lebesgue integral
but not Riemann integral (it’s neither). Rather, you need something “funny” happening, such as the
indicator of the rationals. For the opposite direction (see next problem) you need cancellation.

(6) Give an example of a function that has an improper Riemann integral but is not Lebesgue integrable.
Solution: The sinc function on R on R. The Lebesgue integral does not allow cancellations the same
way an improper Riemann integral does. Note that if sin(x)/x is not integrable on [0,∞), then neither
is sin(1/x)/x on [0,∞) since they are the same after changing variables x ← 1/x. The former does
not decay fast enough at ∞ while the latter oscillates too much near 0.

You can make lots of examples by exploiting cancellation and using conditionally convergent series.
For example, on [0,∞), let i(x) be the function that returns the greatest integer less than x, e.g.,
i(3.7) = 3. Then the function f(x) = 1/x · (−1)i(x) is modulated and has cancellations, so it has
an improper Riemann integral but not a Lebesgue one; the same conclusion holds for the function
f(x) =

∑∞
i=n

1
n (−1)nχ[n,n+1]. In particular, for both functions, we exploit the fact that we know

from undergrad analysis that the sum
∑∞
n=1

1
n (−1)n is conditionally convergent.

Also note that a lot of the “integrals” for Fourier coefficients that we write are not well-defined
in the Lebesgue sense, but we write them that way because it is short-hand notation for the Fourier
transform (which we define using density arguments if f ∈ L2 \L1). Most of these integrals are well-
defined in the improper Riemann sense, so these would make examples. For example, f(x) = 1/x on
all of R, because the contributions from x > 0 and x < 0 cancel each-other out.

This question was missed by a lot of students.

Problem 4: (6 pts) Convergence. 3 points each.

(1) Let fn(x) = einπx ∈ L2([0, 1]). Does fn converge strongly, or weakly, and if so, what is the limit?
Justify your answer.

Solution: It converges weakly to 0 because the dual space is also L2([0, 1]) and this is a subset of
L1([0, 1]) so the Riemann-Lebesgue lemma applies, and the decay property of the Fourier transform
implies the weak convergence. It does not converge strongly because |fn(x)|2 = 1 so ‖fn‖ = 1. [Note
that via Banach-Alouglu, we can immediately infer that it has a weakly convergent subsequence,
and you could try to use this fact to prove that the whole sequence must converge.] Or, not the
equivalence with Fourier series and use Bessel’s inequality. Or note that it is orthonormal and (via
Bessel’s inequality) we know all orthonormal sequences cannot converge strongly but do converge
weakly.

Quite a few students did not correctly calculate ‖fn‖, which should be 1. Recall that |eix| = 1 for
all x.

Rubric: 2 points for right answer without correct justification, 0 to 1 point for wrong answers
depending on arguments.

(2) Let fn(x) = einπxχ[−n,n] ∈ L2(R). Does fn converge strongly, or weakly, and if so, what is the limit?
Justify your answer.

Solution: The Riemann-Lebesgue lemma no longer applies since the dual space is L2(R) and this
is not a subset of L1(R). In fact, we do not have weak convergence because a necessary condition is
that ‖fn‖ is bounded, and it is not (since ‖fn‖2 = 2n). Of course (fn) does not converge strongly
either.

Problem 5: (6 pts) Convergence and Integrals. Let (fn) and f be integrable functions on [1,∞) such that
fn → f a.e. Give a short proof or a counter-example for the following statements: (3 points
each)
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(1) If fn → f uniformly, then limn→∞
∫∞

1 fn =
∫∞

1 f .
Solution: No. Take fn = 2−nχ[2n,2n+1] so

∫
fn = 1 and it converges to 0 uniformly, but

limn→∞
∫
fn = 1 6= 0 =

∫
0. Or take fn to be 0 outside [1, n + 1] and linear inside [1, n + 1]

with f(1) = 2/n and f(n+ 1) = 0, so that
∫∞

1 fn(x) dx = 1 but yet it converges uniformly to 0.
This does not violate the uniform convergence theorem since that theorem requires a bounded

domain of integration.
(2) If (fn) is monotone decreasing, then lim infn→∞

∫∞
1 fn =

∫∞
1 f .

Solution: Yes. Use Fatou’s lemma (the “liminf” should be a big hint to use Fatou).
Specifically, to apply Fatou we need non-negative functions. Since fn ↘ f a.e., we have that

fn− f is non-negative a.e.. We can work directly with fn instead of fn− f since we can just subtract
off
∫
f since it is integrable so this is finite. Thus∫

f =
∫

lim
n→∞

fn =
∫

lim inf
n

fn ≤ lim inf
n

∫
fn

We also have f1 − fn is non-negative a.e. for all n, and similarly can subtract off
∫
f1, so another

application of Fatou gives

−
∫
f =

∫
lim
n→∞

−fn =
∫
− lim inf

n
fn ≤ lim inf

n

∫
−fn

and taking the negative out gives
∫
f ≥ lim infn

∫
fn. Combining the two inequalities gives the

equality.
We can actually quickly prove a stronger statement: since −fn ↗ −f and −fn ≥ −f1 ∈ L1, we

can apply the MCT, and conclude that in fact
∫
f = limn→∞

∫
fn.

These two problems were taken from part of a question from an old prelim test, and student scores
on both these problems were low (only 3 students gave correct or nearly-correct answers to the 2nd
question).

Problem 6: (6pts) Spectral theory. Let A ∈ B(H). 3 points each.

(1) Prove λ ∈ σr(A) implies λ ∈ σp(A∗).
Solution: Let T = A− λI so T ∗ = A∗ − λI. Then

H = ran(T )⊕ ker(T ∗)

so λ ∈ σr(A) implies H 6= ran(T ) and hence there is a non-trivial element in ker(T ∗) which implies
λ ∈ σp(A∗).

This question is fundamental. See Prop. 9.12 in the book.
(2) If A = A∗, prove σr(A) = ∅.

Solution: If A is self-adjoint, the spectrum is real. By the previous question, we have λ ∈ σr(A)
implies λ = λ ∈ σp(A∗) = σp(A), but σr(A) ∩ σp(A) = ∅ by definition, hence we cannot have
λ ∈ σr(A).

Problem 7: (8 pts) Fourier transform. 2 points each.

(1) Let f(x) = eiωx for ω ∈ R be a function on R. Which of the following spaces does f live in:
S(R),S∗(R), L1(R), L2(R) (combinations allowed, e.g., “none” or “all”)?

Solution: It is in S∗(R) and none of the others. If we chose I = [0, 1] instead of I = R, for example,
then it would be in all of S(I),S∗(I), L1(I), L2(I).

(2) Let F be the Fourier transform. What is f̂ def= F(f) for f as above? Solution:
An acceptable answer is δω (i.e. δ(· − ω)), though

√
2πδω is more precise.

Note that the review sheet mentioned two key Fourier transform pairs: the sinc function and box
function, and the Gaussian function (and a scaled version of itself). This δω and eiωx is another key
pair you should memorize forever.
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For intuition, use eq (11.33) which states that δ(x) = 1/
√

2n
∫
eikx dk, though this is not meant in

a precise sense since this is not Lebesgue integrable. Working with the integral themselves is messy
since you need to use an ultraviolet cutoff like Prop. 11.29. It is better to use Prop. 11.27 which says
êiωxϕ = τωϕ̂ for ϕ ∈ S, and therefore this also holds for S∗ since it is defined weakly so all properties
of the Fourier transform on S carry over to S∗. Then just use the fact that we know δ̂ = 1/

√
2n

(example 11.31) and then shift this.
For reference, to use eq (11.33) informally, we do (for ϕ ∈ S arbitrary)

〈f̂ , ϕ〉 = 〈f, ϕ̂〉 =
∫
f(x)ϕ̂(x) dx

=
∫
f(x)

(∫
e−ixyϕ(y) dy

)
dx

=
∫
ϕ(y)

(∫
e−ixyf(x) dx

)
dy

=
∫
ϕ(y)

(∫
eix(ω−y) dx

)
dy

=
∫
ϕ(y)
√

2nδ(ω − y) dy

=
√

2n〈δ(ω − ·), ϕ〉
=
√

2n〈δ(· − ω), ϕ〉.

(Why is this informal? Because we have changed the order of integration even though Fubini’s theorem
doesn’t apply, and we are using eq (11.33) which is not literally true.)

(3) Let ϕ ∈ S(R). What is 〈δ′, ϕ〉?
Solution: It is −ϕ′(0). See Example 11.14 in the book.

(4) Let ϕ ∈ S(R). What is δ′ ∗ ϕ?
Solution: First, observe that we are looking for the answer to be a function, not a scalar. The

equation above Example 11.19 in the book defines the convolution as δ′ ∗ ϕ = 〈δ′, Rτxϕ〉 where R
is the reversal operation and τx the shift-by-τ , so if we have ϕ(y) then (τxϕ)(y) = ϕ(y − x) and
(Rτxϕ)(y) = ϕ(x − y). The action of the distribution is 〈δ′, ψ〉 = −〈δ, ψ′〉 = −ψ′(0) (see previous
question). If ψ = Rτxϕ then via the chain rule, ψ′(y) = −ϕ′(x− y) thus (δ′ ∗ ϕ)(x) = −ϕ′(x), so the
answer is −ϕ′.

This example is very important. When you convolve a function with the delta function, you get
back the function—see references on Green’s function.

Most students missed this problem. Convolutions were not emphasized in this class but they are
fair game on the prelim, as they are mentioned in our text and they are considered part of undergrad
analysis.

Problem 8: (3 pts) Given an example of a measurable space (X,µ) and measurable sets (En) such that
E1 ⊇ E2 ⊇ E3 . . . and

lim
n→∞

µ(En) 6= µ

(⋂
n

En

)
.

Solution: The necessary ingredient in the counter-example is that some En has infinite
measure. For example, let X = R and En = [n,∞) so

⋂
En = ∅.

Th infinite measure ingredient is “necessary” since on problem 2 from homework 11, we
proved that if any En has finite measure, then we do have equality.

Problem 9: (13 pts) Bounded linear operators.

(1)* (1 pt) Let X be a Banach space. If ϕ(x) = ϕ(y) for all ϕ ∈ X∗, prove x = y.
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Solution: This is problem 5.6 from the book and was problem 1 in HW 10 from last semester.
You first define a functional ψ on the subspace spanned by x (wlog let y = 0 since ϕ is linear) such
that ψ(x) = ‖x‖ (unless x = 0), then use Hahn-Banach to extend this to a functional on the whole
space. Therefore if ϕ(x) = 0 for all functions ϕ, we have ψ(x) = 0 but also ψ(x) = ‖x‖ if x 6= 0, so
this is a contradiction.

(2) (2 pts) A closed operator T : X → Y , X and Y normed linear spaces, is such that if for (xn) ⊂ X,
xn → x and T (xn) → y, then T (x) = y. Explain how this differs from a continuous operator, and
state whether closed operators are continuous, or vice-versa, or neither.

Solution: This is weaker than being continuous since we pre-suppose that T (xn) converges. For
continuous (i.e., sequentially continuous), the fact that T (xn) converges (if xn converges) is a conse-
quence, not a condition. Hence continuous implies closed, but not vice-versa.

(3) (0 pts, fact) Let H be a Hilbert space, and let A : H → H and B : H → H be operators (not
necessarily linear nor bounded) with the property that 〈Ax, y〉 = 〈x,By〉 for all x, y ∈ H. Then you
can prove A (and hence B) must be linear operators.

(4) (3 pts) Under the same assumptions as part (3), prove A (and hence B) must be bounded as well.
Hint: you may use the following corollary of the open-mapping theorem known as the “Closed Graph
Theorem”: if X and Y are Banach and A : X → Y is linear, then A is closed iff it is bounded.

Solution: We wish to show A is closed, so we can apply the theorem and conclude it is also
bounded. Let xn → x and A(xn)→ y, and we seek to prove y = A(x). Then for all x ∈ H,

〈y, z〉 = lim
n→∞

〈Axn, z〉 = lim
n→∞

〈xn, Bz〉

= 〈x,Bz〉
= 〈Ax, z〉

since the inner product is continuous. Using part (a), we conclude y = Ax as required.
(5) (4 pts) Let H1(T) be the Sobolev space on the torus. 2 points each:

i. Define the weak derivative (denote the operator by D).
ii. Is D : H1(T) ⊂ L2(T)→ L2(T) bounded? Briefly justify

Solution: We can define it weakly such that if f ∈ H1, then for all ϕ ∈ C1(T), 〈T ′, ϕ〉 = −〈T, ϕ′〉.
Or, define it on the Fourier coefficients and map f̂n to (in)f̂n.

It is not bounded because as we see via the Fourier coefficient definition, it increases the magnitude
of coefficients.

(6) (3 pts) In chapter 10, which we did not cover, the book defines a concept called the “formal adjoint”
of the weak derivative D. Can this be the same concept of “adjoint” that we discussed this semester?
Please discuss why or why not.

Solution: We just argued in 5(ii) that D is not bounded, but we proved in 4 that any operator
with an adjoint mus be bounded. Therefore D cannot have an adjoint in the sense we defined. The
“formal adjoint” is different since it changes the domain. Basically, a linear operator in the sense we
have discussed in class must be defined on the whole domain, but you could restrict it. This is related
to how we view H1: is can be a subset of L2 (that is, using the L2 norm), which is not complete, or
it can be its own Hilbert space with the H1 norm (in which case it is complete).
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