
Final exam Selected Solutions
APPM 5440 Fall 2014 Applied Analysis

Date: Tuesday, Dec. 15 2014, 10:30 AM to 1 PM
You may assume all vector spaces are over the real field unless otherwise specified.
Your proofs may use any major result discussed in class (if you are unsure, please ask).
Total points possible: 107. N.B. Unlike the homeworks, the grades may be curved.
Note that points are not distributed according to difficulty, e.g., you may wish to save problems 9 and 10
for last since they are not worth many points.

Problem 1: Compactness (12 points, 2 points each)

(a) State the topological definition of a compact set
(b) State the definition of a sequentially compact set
(c) State the simplified definition of a compact set in a finite-dimensional metric vector space
(d) State a definition of a pre-compact set
(e) State a definition of a compact linear operator on a normed vector space
(f) Give an example of a set that is bounded but not totally bounded

Solution: These are all in the book. (a) is just “every open cover has a finite subover” (not
countable subcover; and make sure not to confuse this definition with the definition of a closed
set in a metric space. (b) is “every sequence has a convergent subsequence”, and note that we
do not require the sequence to be bounded in the statement (that will be implicitly enforced,
since every compact set is bounded). For (c), “closed and bounded” was the intended answer,
but “complete and totally bounded” was accepted as well, since this is not false. Note that if
we are over the real field, then all finite dimensional vector spaces are isomorphic to Rn for
some n, hence “complete” is equivalent to “compact”; non-complete spaces, like Qn, are not
isomorphic to Rn since these are vector spaces over Q but not over R.

For (e), recall that a compact operator maps bounded sets to pre-compact sets, not to
compact sets. I took off a point if your answer said that bounded sets were mapped to closed
sets (or compact sets), since mapping closed sets to closed sets is an entirely different property.

For (f), the unit ball in any infinite dimensional space is an example (and any example
must necessarily be in infinite dimensions, otherwise bounded implies totally bounded).

Problem 2: Major theorems (14 points, 2 points each) State the following theorems. You may choose
one of these to skip (please indicate which one you do not want graded)

(a) State the Arzelà-Ascoli theorem
(b) State the Weierstrass Approximation theorem
(c) State the Banach contraction mapping theorem
(d) State the Hahn-Banach theorem (any version)
(e) State the open-mapping theorem
(f) State Grönwall’s inequality
(g) State Bessel’s inequality regarding an orthonormal set U = (un)n∈N (you do not need to

consider uncountable sets)
(h) State at least three equivalent definitions of an orthonormal basis (again, you do not need

to consider uncountable sets)
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Solution: See the book. For (b), I took off 1/2 point if you did not state that this only
applied to functions over a compact interval of R; it is not true over all of R (indeed, the L∞
norm is not even a valid norm in this case, since it can be infinity).

For (c), I took off a full point if you did not require the space to be complete, since this is
important (it need not be Banach; a complete metric space is OK, but I didn’t penalize this).

Also note that a contraction is defined as a map T : X → X where

∃c ∈ [0, 1) such that ∀x ∈ X, ‖Tx‖ ≤ c‖x‖.

(here I am assuming T is linear and X is a Banach space, but similar definitions apply in
general). This is not the same as a map T ′ where

∀x ∈ X, ‖T ′x‖ < ‖x‖.

This is a subtle but important point! In the former case, we can derive that ‖Tnx‖ ≤ cn‖x‖ →
0, but this conclusion does not apply in the latter case.

For (d), we need a linear subspace Y inside X (not a subset), and X must be a normed
linear space. The subspace Y need not be closed. I didn’t take off points if you missed just
one of these little details. Also note that the extension need not be unique.

For (e), the statement is that if there is a linear bounded bijection between two Banach
spaces, then the inverse is bounded. If the spaces are not complete, then the inverse need not
be bounded, so the completeness of the spaces is crucial to the theorem and thus I took off a
point if you missed this.

For (f), I took off a half-point if you forgot to require the non-negativity of the functions.
For (g), I took off a half-point if you didn’t square the terms; the answer should be∑
n |〈un, x〉|2 ≤ ‖x‖2 (many people also added the other 2 parts of the theorem in the book,

but I didn’t take off points if these were missing). Make sure that all your quantities are
real numbers – think of this as a “dimensional analysis” check. E.g., you cannot compare∑
〈un, x〉 ≤ ‖x‖ because 〈un, x〉 might be complex while ‖x‖ is always real (even if the vector

space is over the complex field).
For (h), make sure that you included the assumption that the set was orthonormal, and

then made the additional requirements (e.g., totality, trivial orthogonal complement, maximal,
Parseval’s identity), otherwise it is not valid.

For reference, 4 students skipped the Bessel question, 3 skipped the open-mapping theorem,
1 skipped Grönwall’s inequality, 2 skipped the Hahn-Banach theorem, 1 skipped the Weierstrass
theorem, and 1 skipped the orthonormal basis question.

Problem 3: (16 points, 2 points each) Weak topologies and convergence. Let X be a normed linear space.
You do not need to justify your answer.

(a) What does it mean to say a set F ⊂ X is weakly closed?
(b) If F is weakly closed, is it necessarily also closed?
(c) If F is closed, is it necessarily also weakly closed?
(d) If (xn) ⊂ X and xn ⇀ x, then does ‖xn‖ → ‖x‖?
(e) Are weak convergence and strong convergence the same if X = R (with the standard

Euclidean norm)?
(f) Let X be a Banach space and X∗ its topological dual. What is weak-* convergence?
(g) When is weak-* convergence equivalent to weak convergence?
(h) Let X and Y be Banach spaces. What does it mean to say that a sequence (Tn) in
B(X,Y ) converges strongly (not uniformly)? i.e., strong operator convergence.

Solution:
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(a) It means (xn) ⊂ F and xn ⇀ x implies x ∈ F .
(b) Yes, since to show F is closed, let (xn) ⊂ F and xn → x, then xn ⇀ x as well, so x ∈ F ,

hence F is closed. Another way to see this is that the strong topology is stronger/finer
than the weak topology, and consistent with it, which means all open sets in the weak
topology are open in the strong topology but not vice-versa. Since closed sets are just
the complement of open sets, the same conclusion holds with closed sets.

(c) No, since D = {x ∈ `3 | ‖x‖ = 1} is closed but not weakly closed, as we showed in our
homework.

(d) No, since if (xn) is orthonormal in `p for p > 1 then xn ⇀ 0 but ‖xn‖ = 1 so limn→∞ ‖xn‖ =
1 6= ‖0‖ = 0.

(e) Yes. For example, 1 ∈ R so 〈1, ·〉 is a bounded linear functional. In fact, weak convergence
and strong convergence are equivalent in any finite dimensional space. This can be proven
using the facts from §5.4 from the book.

(f) Weak-* applies when a sequence in the dual, (ϕn) ⊂ X∗, converges in the sense that
∀x ∈ X, ϕn(x)→ ϕ(x).

(g) When the space is reflexive (X = X∗∗). Some students said “in finite dimensions” which
is not the answer I wanted, but this is true (since in finite dimensions, all spaces are
reflexive). Also note that X = X∗ is another sufficient but not necessary condition (since
this implies that X = X∗∗ of course).

(h) It means ∀x ∈ X, ‖Tnx− Tx‖ → 0

Problem 4: (15 points) Let (fn) ⊂ C(I), and consider

lim
n→∞

∫
I

fn(x) dx ?=
∫
I

f(x) dx.

When is this necessarily true? If it is true, prove it, and if it is false, provide a counter-example.

(a) (5 points) fn converges uniformly to f , and I = [a, b].
(b) (5 points) fn converges point-wise to f , and I = [a, b].
(c) (5 points) fn converges uniformly to f , and I = R.

Solution:

(a) This follows since
∣∣∫
I
(fn(x)− f(x)) dx

∣∣ ≤ ‖fn − f‖∞ · (b − a) (see also the homework
solution in homework 4).

(b) See the homework solution (problem 2.2, in homework 4); this is not true and you can
find counter-examples. You can even find counter-examples where f is continuous (e.g.,
f = 0).

(c) This is not true. Consider fn representing a triangular region where the height shrinks
and the base elongates as n→∞ in such a way that the area under the triangle is always
1. Then fn converges to 0 uniformly. This was an example where all the integrals are
finite, and f is even continuous, but the equality does not hold.

If you do not require finite integrals, then taking fn = 1/n is a very simple counter-
example, since this converges to f = 0.

Note that this problem was worth a lot of points because I consider it fundamental.

Problem 5: (10 points) Prove Lemma 1.63: a sequentially compact metric space X is separable. You may
use other relevant theorems in your proof.

Solution: See the book; use total boundedness (this is why I stated the hint about other
theorems) and take a union of epsilon-nets. You should not use the sequential compact defi-
nition directly, since this is hard to generalize to all points in the set. In particular, note that
there can be uncountably many sequences, so dealing with these is not easy.

3



Problem 6: (5 points) Let X be a space of points, and Td be the discrete topology P(X), and Tt be
the trivial topology {∅, X}. Consider the identity map I : (X, Tt) → (X, Td). Is this map
continuous? Briefly prove your answer. Solution: A map f is continuous iff the pre-image of
an open set is open. Therefore, unless X consists of a single point, there is an open set in the
Td topology that is not in the Tt topology, and so the identity map cannot be continuous.

Problem 7: (10 points) Let X be a normed linear space. A series
∑
xn in X is absolutely convergent if∑

‖xn‖ converges to a finite value in R.

(a) (7 points) Prove that if X is a Banach space, then every absolutely convergent series
converges

(b) (3 points) Conversely, prove that if every absolutely convergent series converges, then X
must be Banach.

Solution: This was exercise 1.20 in the book; see homework 3 solutions. The first part of
this should not be too difficult which is why it was worth a lot of points; the second part of
this problem is a bit tricky (one person received full credit).

Problem 8: (15 points) Show that for 1 ≤ p < ∞, then (`p)∗ = `q (in the sense that the two spaces are
isometrically isomorphic) for 1/q = 1 − 1/p, and that (`∞)∗ 6= `1. You may take the field to
be R, and you may use standard theorems and inequalities that have been discussed in class.
Specifically,

(a) (5 points) Show (`p)∗ ⊂ `q for 1 ≤ p <∞.
(b) (5 points) Show `q ⊂ (`p)∗ for 1 ≤ p <∞.
(c) (3 points) Explain why the above proof technique fails for p =∞
(d) (2 points) Show (`∞)∗ 6= `1 (Hint: use the Hahn-Banach theorem)

Solution: Parts of this were a homework problem in homework 9; see the homework solu-
tions. I consider this extremely fundamental, and it synthesizes several topics, so please study
this problem well.

In part (a), you need to use sequential continuity of the inner product (not triangle in-
equality, not Hölder’s inequality). See proof sketch below.

Part (b) is easy using Hölder’s inequality, and the linearity is obvious. Make sure that the
objective of what you want to show is clear; many students confused parts (a) and (b).

For part (c), it is not that Hölder’s inequality fails, rather it is the partial sums do not
converge in `∞ so you cannot use sequential continuity. Several answers used an example of
(1, 1, 1, . . .) as a potential dual vector that is not in `1, but this does not lead to a bounded linear
functional; also, the issue is not that some bounded linear functionals cannot be represented
by a sequence in `1, but that they cannot be represented by a sequence at all!

For part (d), see the solutions in HW 9 (but note that another proof uses separability
arguments); the idea is to look at the subspace of all sequences that have a limit.

For part (a), the proof sketch goes like this: let (en) be the unit basis elements, and for an
arbitrary dual element ϕ, define y = (yn) with yn = ϕ(en), and define ϕy(x) = 〈y, x〉. Now,
we claim two things: first, that ϕ(x) = ϕy(x) for all x, and that y ∈ `∞.

For the first claim, we use the fact that x(n) def=
∑n
k=1 xkek converges to x in the `p norm

as long as p < ∞. If p = ∞ this part fails. Now, use the sequential continuity of the inner
product to see that

ϕ(x) = ϕ
(

lim
n→∞

x(n)
)

= lim
n→∞

ϕ(x(n)) = lim
n→∞

〈y, x(n)〉 = 〈y, x〉

where we used the linearity of ϕ (we had to first reduce to x(n) since this has only finitely
many terms, and the linearity only applies to finitely many terms). So we use the linearity of
ϕ in an essential way.
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For the second part, showing y ∈ `q, we can do the following (note that no student answered
this sufficiently). Let y(n) =

∑n
k=1 ykek. Our key tool is now the boundedness of ϕ. Without

loss of generality, assume ‖ϕ‖ = 1. For all n, ‖y(n)‖q certainly exists since this is a finite sum.
Now define xk = yq−1

k = y
q/p
k since 1/p + 1/q = 1. We also have x = (xk) ∈ `p since this is a

finite sum as well. We will assume wlog that we are over the real field and yk ≥ 0; if not, we
could modify xk to include a sign term as well. Now we have

‖y(n)‖qq =
n∑
k=1

yky
q−1
k = 〈y(n), x〉 = ϕ(x) ≤ ‖ϕ‖‖x‖p =

(
n∑
k=1

(yp/qk )p
)1/p

= ‖y(n)‖q/pq

and ‖y(n)‖q ≤ ‖y(n)‖q/p for p ≥ 1 implies that ‖y(n)‖ ≤ 1. Thus limn→∞ ‖y(n)‖q exists since it
is an increasing and bounded sequence of real numbers, so ‖y‖q is finite, so y ∈ `q. Note that
you cannot use corollaries of the Hahn-Banach for this part since that would require circular
logic about the nature of the dual spaces.

Problem 9: (5 points) Dini’s monotone convergence theorem: let (fn) ⊂ C([0, 1]) be a monotone decreasing
sequence that converges pointwise to f ∈ C([0, 1]). Prove fn converges uniformly to f .

Solution: This was a homework problem (2.11); see the homework 5 solutions.

Problem 10: (5 points) Let X be a normed linear space and M a closed subspace, and let x0 /∈M . Define

d = dist(M,x0) def= inf
y∈M
‖y − x0‖.

Prove there exists ϕ ∈ X∗ such that ϕ(x0) = 1, ϕ(y) = 0 for all y ∈M , and ‖ϕ‖ = 1/d.

Solution: We use the Hahn-Banach theorem. Let M̃ = span(M,x0) and define ψ(x) =
d−1dist(M,x). On M̃ , this is a bounded linear functional. First, we show it is linear. We start
by showing ψ(λx) = λψ(x). We have

dist(M,λx) = inf
y∈M
‖y − λx‖ = inf

λy∈M
λ‖y − x‖ = λdist(M,x)

since y ∈M ⇐⇒ (∀λ)λy ∈M since M is a linear subspace.

Now we show that ϕ(x + x′) = ϕ(x) + ϕ(x′) if x, x′ ∈ M̃ . We can write x = m + γx0
and x′ = m′ + γ′x0 since they are in M̃ . Clearly ϕ(x) = d−1γ and ϕ(x′) = d−1γ′. Also,
x+ x′ = m′′ + (γ + γ′)x0 and we see ϕ(x+ x′) = d−1(γ + γ′) since m′′ def= m+m′ ∈M .

Hence ψ is linear, so we now show it is bounded. Since 0 ∈M , infy∈M ‖y−x‖ ≤ ‖x‖ for all
x, hence ψ is bounded by d−1. Furthermore ‖ψ‖ = d−1; this does not follow immediately and
is in fact a bit tricky. One way to show this is the following: for every ε > 0, define yε ∈ M
such that ‖yε − x0‖ < d + ε. Then x′ = x − yε ∈ M̃ and dist(M,x′) = dist(M,x0) = d, and
‖x′‖ < d+ ε. So

ψ(x′) = d−1d = 1 > d−1(d+ ε) > d−1‖x′‖

therefore ‖ψ‖ ≥ d−1 since ε was arbitrary, so combined with ‖ψ‖ ≤ d−1 we have ‖ψ‖ = d−1.
We also have ψ(x0) = 1 and ψ(m) = 0 for m ∈M , so we have satisfied the requirements.
Therefore we can apply the Hahn-Banach theorem to extend this functional to the entire

space. This completes the proof.
Note: our explicit definition of ψ is not necessarily a bounded linear functional on all of

X. Example: in R3, let M be the x-axis, and x0 = (0, 1, 0) and w = (0, 0, 1), then with the
Euclidean distance, dist(M,x0) = dist(M,w) = 1 but dist(M,x+ w) =

√
2 6= 2, so this is not

linear. Thus using the Hahn-Banach to extend from M̃ to X is essential.
Note: we cannot use the projection theorem since this is not necessarily a Hilbert space.

Your answer cannot use any type of orthogonality. Recall exercise 6.2 in the book, whose
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purpose was to prove that in a Banach space, the conclusions of the projection theorem may
fail to hold.

Note: we needed M to be closed otherwise it is possible for d = 0 even if x0 /∈ M , and if
that were true, it would not be possible for ϕ(x0) = 1.

Grading The grades were curved so that the percentage was raised to the .6 power, which is more beneficial
to the lower scores than simply adding points or reducing the total possible points to the best score (which
as 98/107).
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