
Homework 7 and 8
APPM 4720/5720 Spring 2017
Advanced Convex Optimization

Due date: Friday, Mar 10 2017
Theme: Duality and FISTA Instructor: Dr. Becker

Instructions Collaboration with your fellow students is allowed and in fact recommended, although direct
copying is not allowed. The internet is allowed for basic tasks. Please write down the names of the students
that you worked with. An arbitrary subset of these questions will be graded.

Reading Read chapter 5 in [BV2004].

Homework 7: Duality and TV denoising
Problem 1: [Optional but recommended] Problem 5.16 in [BV2004] (and read problem 5.14)

Problem 2: 2D total-variation (TV) is a seminorm that acts on an image (i.e., matrix) X ∈ Rn1×n2 as

TV(X) =
n1∑

i=1

n2∑
j=1

√
(Xi+1,j −Xi,j)2 + (Xi,j+1 −Xi,j)2

where we define Xi,j = 0 if either i > n1 or j > n2 (i.e., zero boundary conditions). This
is used as penalty that discourages changes in value in the matrix, and hence can be used to
regularize optimization problems involving images that have large regions of constant intensity
(see Homework 8’s phantom image for an example). The above definition is known as “isotropic
TV” because it is invariant under orthogonal rotations of the image. There are other variants
(e.g., other boundary conditions, differentiable but non-isotropic variants, higher-order TV to
reduce staircasing effects, etc.). See An introduction to continuous optimization for imaging
by Chambolle and Pock (Acta Numerica, 2016) for a recent survey-level article on TV and
related topics in variational imaging.
One way to think of the TV operator is

TV(X) =
n1n2∑
i=1

∥∥∥∥[yh
i

yv
i

]∥∥∥∥
2

or

=
n1n2∑
i=1
‖yh

i +
√
−1yv

i ‖1 this is the complex `1 norm

where
yh = Lh(X)
yv = Lv(X)

and Lh and Lv are the horizontal and vertical standard forward finite-difference operators. In
other words, the map X 7→ (Lh(X), Lv(h)) = (yh, yv) is a discrete gradient operator and its
adjoint will be, up to a negative, a form of a discrete divergence. (Note: I am avoiding using

1

https://hal.archives-ouvertes.fr/hal-01346507/document

the notation
√
−1 instead of i since we’ve used i as an index variable.) If we vectorize X in

column-major order, and let the n× n matrix Dn be defined

Dn =


−1 1 0 . . . 0
0 −1 1 . . . 0
0 0 −1 . . . 0
...

. . . 1
0 . . . −1


and In be the n× n identity matrix, then we can define

Lh = Dn2 ⊗ In1 , Lv = In1 ⊗Dn1

where ⊗ is the Kronecker product

A⊗B def=

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
Define the discrete gradient operator L as either L : X 7→ (Lh(X), Lv(h)) with gi : R2 → R

as gi(y1, y2) =
√
y2

1 + y2
2 , or as L : X 7→ Lh(X) +

√
−1Lv(h) with gi : C → R as gi(z) =

|z| def=
√
<(z)2 + =(z)2 (both interpretations are equivalent). Define g(y) =

∑n1n2
i=1 gi(y) (with

domain either Rn1n2×2 or Cn1n2 , depending on your previous interpretation). Thus TV(X) =
g(L(X)). Then the TV denoising problem is, given a noisy image Y , find a nearby proposed
image X that has small TV semi-norm:

min
X∈Rn1×n2

1
2‖X − Y ‖

2
F (P)

subject to g(L(X)) ≤ τ.

This form of the problem is not amenable to efficient first-order methods because it is not
easy to project onto these constraints. However, an appropriate dual problem will be efficient.
First rewrite the problem as

min
X,z

1
2‖X − Y ‖

2
F (P’)

subject to g(z) ≤ τ, L(X) = z.

Find the dual of this problem (P’). (Hint: only dualize the equality constraint; that is, keep
the inequality constraint implicit in the Lagrangian and do not introduce a dual variable for
it).

Homework 8: FISTA and TV denoising
See the end of the homework for more information on FISTA. We build a bit on the logistic regression from
last homework. You may use the files on the class github website, or your classmates’ files, to setup the
spam classification problems from the previous homework.

Problem 1: Re-run the logistic regression on the spam data from Homework 6, but use any of Nesterov’s ac-
celerated methods instead of plain gradient descent. You may use a fixed stepsize (a backtrack-
ing line search is optional). Also run the logistic regression using an existing implementation
of a derivative-free method, such as the Nelder-Mead simplex (direct search) method, which
is implemented for you in Matlab via fminsearch, and in Python via scipy.optimize.fmin.

2

http://github.com/stephenbeckr/convex-optimization-class

[Note: the Nelder-Mead simplex algorithm is unrelated to “the” simplex method for linear
programming]. Do the same pre-processing as Homework 6.

Deliverables: Upload your code to the google drive folder, and in a printed write-up,
include a plot of the objective value in the logistic regression problem using (1) last week’s
gradient descent method, (2) the new Nesterov accelerated method, and (3) the derivative-
free code. You may want to plot the y-axis in log scale (e.g., semilogy in Matlab, or
matplotlib.pyplot.semilogy in Python).

Problem 2: Re-run the logistic regression on the spam data, this time adding a `1 penalty, and using a
proximal gradient method. Specifically, solve

min
w

`(w; y,X) + λ‖w‖1

for λ = 5. Your code should allow for a generic proximity function that maps

(y, t) 7→ proxtg(y) = argmin
x

tg(x) + 1
2‖x− y‖

2
2.

In our case, g(x) = λ‖x‖1 and

proxtg(y) = sign(y) · b|y| − tλc+

where each operation is done component-wise, and bac+ = max(a, 0). Don’t forget the t factor!
You can use a standard proximal gradient method, or an accelerated method like FISTA. You
may use a fixed stepsize of 1/L. Do the same pre-processing as Homework 6.

Deliverables: Upload your code to google drive, and in a printed write-up, include a plot
of the optimal weights w obtained both with and without the `1 regularization, and also the
testing/training classification accuracy with and without the regularization.

Problem 3: TV denoising in CVX/CVXPY. Implement TV denoising of the MRI phantom image using
CVX or CVXPY. Using these solvers, we cannot scale to large problems (if you wanted to,
follow the ideas of Homework 7 and solve with a proximal method), so we will work with a
150× 150 image. Specifically:
In Matlab, you can generate the MRI phantom image with

Y = phantom(’Modified Shepp-Logan’,150). For python users, I have saved several file
formats of this image and put them on D2L (e.g., a pickle pkl file, a png file, an ascii file with
whitespace separator, and a .mat file which can be read using the scipy.io.loadmat library
— use whichever format is easiest for you). The image Y should have values in [0, 1].
Add a simple version of salt-and-pepper noise (a more realistic noise model would be shot

noise). Randomly pick 10% of the pixels, and add a uniform random number in [0, 1] to these
pixels. See Fig. 1. Call this noisy version Y_noisy.
Make the discrete gradient linear operator described in Homework 7 and represent it with a

sparse matrix. You may want to use spdiags (for Dn) and kron (in python,
scipy.sparse.spdiags and scipy.sparse.kron).
Using the discrete gradient, make a CVX/CVXPY compatible function to represent the

TV semi-norm. In cvx, you may use either the complex version and norm(,1) which sup-
ports the complex `1 norm, or a combination of sum and norms(, 2, 2). In python, use
cvx.sum_entries, cvx.norm2, and cvx.hstack.
Finally, solve the TV denoising problem (P) (from Homework 7) using τ as 1/4 the value of

the TV semi-norm of Y_noisy. Include constraints that 0 ≤ Xi,j ≤ 1.
Deliverables: There need not be a lot of code as we are using CVX/CVXYPY, so please

print out the code. Include figures of your noisy image as well as the denoised image given
from solving (P).

3

https://en.wikipedia.org/wiki/Shot_noise
https://en.wikipedia.org/wiki/Shot_noise

Original

50 100 150

20

40

60

80

100

120

140

Noisy

50 100 150

20

40

60

80

100

120

140

Figure 1: MRI phantom test image, with and without noise. An experiment with this test image was the
beginning of the theory of compressed sensing; see Robust Uncertainty Principles: Exact Signal
Reconstruction from Highly Incomplete Frequency Information by Candès, Romberg, Tao 2004.

References for Nesterov’s method: Note that we informally refer to Nesterov’s accelerated method and
FISTA interchangeably. FISTA (and also another paper from Nesterov around the same time) was important
because it allowed a proximity operator term. The basic method looks like this (for minx f(x) + g(x)) and
t = 1/L where ∇f is L-Lipschitz continuous:

xk+1 = proxtg (yk − t∇f(yk))

yk+1 = xk+1 + k

k + 3 (xk+1 − xk) .

For Nesterov’s method, there are several variants of Nesterov’s method to choose from. See Gradient-
Based Algorithms with Applications to Signal Recovery Problems by Amir Beck and Marc Teboulle (2010)
page 23 for “FISTA” code (both fixed stepsize and backtracking), or Lecture 9. Accelerated proximal gradient
methods in Lieven Vandenberghe’s EE236C course. For more variants of Nesterov, see the TFOCS paper by
Becker, Candés and Grant (2011). For some discussion of the intuition, see Sébastien Bubeck’s “Revisiting
Nesterov’s Acceleration” blog post, which discusses Bubeck’s own work, as well as citing some recent papers
about differential equation interpretations (Su, Boyd, Candès 2015). This last interpretation has been very
popular; about 5 submissions to ICML 2017 discuss it; see also A Variational Perspective on Accelerated
Methods in Optimization (2016).
Some of the motivation for Nesterov’s method comes from Polyak’s 1964 “Heavy Ball Method.” For the

case of quadratics, this can be analyzed simply and is an exercise in Bertsekas’ Nonlinear programming book.
See also Ben Recht’s analysis of the heavy ball method.
Another interesting connection is that recent methods, like Hogwild!, which are parallel computing meth-

ods that do not lock variables and update asychronously (hence they are fast, but computations may be
inaccurate) can be see as variants of Nesterov’s method. See Asynchrony begets momentum, with an appli-
cation to deep learning 2016. They conclude that if you have asynchrony, you need to reduce the amount of
momentum.
Two downsides to accelerated methods:
1. They are faster in the presence of strong convexity, but need to know the strong convexity constant,

unlike gradient descent (which exploits it automatically). There are several ways around this (assuming
that you don’t know the strong convexity constant, which is useful, since sometimes we only have local
strong convexity or restricted strong convexity). A popular approach is to restart the weight counter
back to 0; see Adaptive Restart for Accelerated Gradient Schemes by O’Donoghue, Candès ’12.

2. Though f(xk) converges, it is not shown that (xk) itself converges (unless one assumes strong convex-
ity). There is a variant of FISTA where the iterates do provably converge; see On the convergence of
the iterates of “FISTA”.

3. They may be more sensitive to computational errors in some cases, especially deterministic errors.
Some recent work proposes modifications that make the methods more stable; see Stability of over-
relaxations for the Forward-Backward algorithm, application to “FISTA” (2015).

4

http://statweb.stanford.edu/~candes/papers/ExactRecovery.pdf
http://statweb.stanford.edu/~candes/papers/ExactRecovery.pdf
http://www.math.tau.ac.il/~teboulle/papers/gradient_chapter.pdf
http://www.math.tau.ac.il/~teboulle/papers/gradient_chapter.pdf
http://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
http://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
http://cvxr.com/tfocs/paper/
https://blogs.princeton.edu/imabandit/2015/06/30/revisiting-nesterovs-acceleration/
https://blogs.princeton.edu/imabandit/2015/06/30/revisiting-nesterovs-acceleration/
https://arxiv.org/abs/1503.01243
https://arxiv.org/abs/1603.04245
https://arxiv.org/abs/1603.04245
http://pages.cs.wisc.edu/~brecht/cs726docs/HeavyBallLinear.pdf
https://arxiv.org/abs/1605.09774
https://arxiv.org/abs/1605.09774
https://arxiv.org/abs/1204.3982
https://hal.inria.fr/hal-01060130v3
https://hal.inria.fr/hal-01060130v3
https://hal.archives-ouvertes.fr/hal-01163432
https://hal.archives-ouvertes.fr/hal-01163432

