APPM 4360/5360 Introduction to Complex Variables and Applications HOMEWORK #5

Assigned: Monday March 4, 2019

DUE: At class Monday March 18, 2019

XC: Extra Credit

1. Consider $f_n(z)g_n(z)$ in a domain D where: $|g_n(z)| \leq M, M$ constant in D and $f_n(z)$ converges to zero uniformly for all $z \in D$. Prove $f_n(z)g_n(z)$ converges to zero uniformly for all $z \in D$.

2. Find the Taylor series expansion of the following functions: a) $\frac{z^2}{1+z^3}$, |z| < 1, b) $\cosh kz$, k > 0 constant, $c)ze^{ikz^2}$, k > 0 constant.

3. Given:

$$F(z) = \int_{-\infty}^{\infty} f(t) e^{izt} dt$$

where $f(t) = e^{\alpha_1 t}$, t < 0, $f(t) = e^{-\alpha_2 t}$, t > 0, $\alpha_j > 0$, j = 1, 2 constants. Find the region of the complex plane where F(z) is analytic; explain. Do the same if $f(t) = te^{-\kappa t^2}$, $\kappa > 0$; explain. F(z) is referred to as the Fourier transform of f(t).

4. Let

$$F(z) = \int_0^\infty f(t)e^{-zt}dt$$

where f(t) is continuous and $|f(t)| \leq Ae^{-\alpha t}, A > 0, \alpha > 0$, constants. Find the region of the complex plane where F(z) is analytic; explain. F(z) is referred to as the Laplace transform of f(t).

5. Let $f(z) = \frac{1}{z^2 + \alpha^2}, \alpha > 0$. Find the Laurent expansion in the regions a) $|z| > \alpha$ b) $|z| < \alpha$

6. Given the function

$$f(z) = \frac{2z}{(z-i)(z+2)}$$

Find the Laurent series of f(z) in the regions: a) |z| < 1, b) 1 < |z| < 2, c) |z| > 2

7. Discuss all singularities of the following functions; including the type of singularity: pole-include order, essential, branch point, cluster ..., that each of these functions have in the finite z-plane. For parts a,b,c,d if the functions have a Laurent series around any of the singularities find the first two nonzero terms

a)
$$\sec z$$
 b) $\frac{1}{e^z - 1}$ c) $\frac{\log z}{z(z-2)}$ d) $\sin(1/z^2)$ e) $\coth(1/z)$

8. Solve: Evaluate the integral $\frac{1}{2\pi i} \oint_C f(z) dz$ where C is the unit circle centered at the origin and f(z) is given below

a)
$$\frac{z^2}{z^2+a^2}$$
, $0 < a < 1$, b) $\cot(2z)$ c) $\frac{\log(z+a)}{z+1/a}$, $a > 1$, principal branch

9. a. Let $f(z) = 1 + z^2 + z^4 + \dots, |z| < 1$. Find a function, call it g(z), that analytically continues f(z) to |z| > 1; what can be said about g(z) on |z| = 1 and for |z| < 1; explain.

b. Consider $f(z) = \log(2(z-1))$, $z-1 = re^{i\theta}$. Discuss/explain the analytic continuation of the function from $R_1 \to R_2 \to R_3$ where r > 0 and θ is in the regions: $R_1 : 0 \le \theta \le \pi/2$; $R_2 : \pi/3 \le \theta \le 4\pi/3$; $R_3 : \pi \le \theta \le 7\pi/3$.

XC 3.3.6