
APPM 4360/5360: Introduction to Complex Variables
Spring 2019
Homework 1

Problem 1: (15 points) Express each of the following complex numbers in
polar exponential form: reiθ

(a) -2i

−2i = 2e3iπ2 =⇒ r = 2, θ = 3π/2

(b) 1√
2
− i√

2

r2 =

(

1√
2

)2

+

(−1√
2

)2

= 1, tan θ =
−1/

√
2

1/
√
2

= −1.

Since cos θ = x > 0, θ = 7π/4. Thus, 1√
2
− i√

2
= e7πi/4.

(c)
√
3− i

r2 = (
√
3)2 + (−1)2 = 4, tan θ = − 1√

3
.

Since x > 0, y < 0, then θ = 2π−π/6 = 11π/6. Thus,
√
3−i = 2e11πi/6.

Problem 2: (15 points) Express the following in the form x + yi, where x
and y are real:

(a) 1
1−2i

1

1− 2i
=

(1 + 2i)

(1− 2i)(1 + 2i)
=

1 + 2i

5
=⇒ x = 1/5, y = 2/5

Thus, 1
1−2i

= 1/5 + (2/5)i.



(b) (1− i)2(1 + 2i)

(1− i)2(1 + 2i) = (1− 2i− 1)(1 + 2i) = −2i(1 + 2i) = 4− 2i.

(c) |1− 3i|
This is a real number, the absolute value of 1− 3i, i.e.

|1− 3i| =
√

12 + (−3)2 =
√
10.

Problem 3: (12 points) Solve for all the roots of the following equation:
z3 − 2z2 + 2z = 0
Solution: First note that z3 − 2z2 + 2z = z(z2 − 2z + 2) = 0, so one root is
z1 = 0. Now solve for the other two

z2,3 =
2±

√
4− 8

2
= 1± i.

Thus, the 3 roots are z = 0, 1 + i, 1− i.

Problem 4: (16 points) Establish the following inequalities:

(a) |4z1 − z2| ≤ 4(|z1|+ |z2|)
By triangle inequality,

|4z1 − z2| ≤ |4z1|+ | − z2| = 4|z1|+ |z2| ≤ 4(|z1|+ |z2|).

(b) |2z1z̄2 + 3z̄1z2| ≤ 5|z1||z2|
By triangle inequality,

|2z1z̄2 + 3z̄1z2| ≤ 2|z1z̄2|+ 3|z̄1z2| = 2|z1||z2|+ 3|z1||z2| = 5|z1||z2|.

Problem 5: (15 points) Sketch the region associated with the following
inequality and determine if the region is open, closed, bounded, compact,
connected: 6 ≤ |3z + 7| ≤ 9; Explain.



Solution: Rewrite the inequalities as 2 ≤ |z + 7/3| ≤ 3, which shows that
this is an annular region between 2 circles with center z = −7/3 and radii 2
and 3, including both the outer boundary circle |z + 7/3| = 3 and the inner
boundary circle |z + 7/3| = 2. The region is not open since it contains its
boundary; it is closed; it is bounded (can be surrounded by a finite circle);
it is compact since closed and bounded; it is connected since its every two
points can be connected by a curve completely lying inside the set.

Problem 6: (10 points) Show that ℑ(1/z) and ℑ(−z) have the same sign
for all z 6= 0.
Solution: Let z = x+ iy, i.e. ℜz = x and ℑz = y. Then

1

z
=

1

x+ iy
=

x− iy

(x+ iy)(x− iy)
=

x− iy

x2 + y2
.

Thus, ℑ(1/z) = −y/(x2 + y2) which has the same sign as −y = ℑ(−z).

Problem 7: (12 points) Find the series expansion around z = 0 of: sin z−z
z2

Solution:

sin z =
∑

n≥0

(−1)nz2n+1

(2n+ 1)!
= z +

∑

n≥1

(−1)nz2n+1

(2n+ 1)!
,

therefore

sin z − z

z2
=

∑

n≥1

(−1)nz2n−1

(2n+ 1)!
=

∑

n≥0

(−1)n+1z2n+1

(2n+ 3)!
.

Problem 8: (40 points) Evaluate the following limits, explain reasoning:

(a) limz→0
cos(βz)−1

z2
, β 6= 0 constant

Using series expansion of cos,

lim
z→0

cos(βz)− 1

z2
= lim

z→0

1− (βz)2/2 + · · · − 1

z2
= lim

z→0
(−β2

2
+. . . ) = −β2/2.

(Dots stand for powers of z higher than those written out.)



(b) limz→0
sin(αz)
sin(βz)

, α, β 6= 0 constant

lim
z→0

sin(αz)

sin(βz)
= lim

z→0

αz − (αz)3/6 + . . .

βz − (βz)3/6 + . . .
= lim

z→0

αz(1− (αz)2/6 + . . . )

βz(1− (βz)2/6 + . . . )
=

α

β
.

(c) limz→∞
Mz4+z

(Nz2+3)2
; M,N 6= 0

lim
z→∞

Mz4 + z

(Nz2 + 3)2
= lim

z→∞

z4(M + 1/z3)

z4(N + 3/z2)2
= lim

z→∞

M + 1/z3

(N + 3/z2)2
=

M

N
.

(d) limz→∞
sinh 2az
cosh 2az

, a > 0 constant

sinh 2az

cosh 2az
=

e2az − e−2az

e2az + e−2az
,

consider two different ways of approaching z = ∞: first let z = x real
and x → +∞, then

lim
x→+∞

e2ax − e−2ax

e2ax + e−2ax)
= lim

x→+∞

e2ax

e2ax
= 1.

On the other hand, if still z = x but now x → −∞, then

lim
x→−∞

e2ax − e−2ax

e2ax + e−2ax)
= lim

x→−∞

−e−2ax

e−2ax
= −1.

The two limits are different which shows that limz→∞
sinh 2az
cosh 2az

does not
exist.

Problems 9: (40 points)

(a) Problem 1.3.3: (20 points) If |g(z)| ≤ M , M > 0 for all z in a
neighborhood of z = z0, show that if limz→z0 f(z) = 0, then

lim
z→z0

f(z)g(z) = 0.



Solution: Consider limz→z0 |f(z)g(z)| = limz→z0 |f(z)||g(z)|. We have

0 ≤ lim
z→z0

|f(z)||g(z)| ≤ lim
z→z0

M |f(z)| = M lim
z→z0

|f(z)| = 0,

i.e. 0 ≤ limz→z0 |f(z)g(z)| ≤ 0 which implies that limz→z0 |f(z)g(z)| = 0
and then limz→z0 f(z)g(z) = 0.

(b) (20 points) Where are the following functions differentiable: i) tanh z;
ii) e1/(z−i)

i) Solution:

tanh z =
sinh z

cosh z
,

a ratio of two functions each of which is differentiable everywhere in C.
Therefore tanh z is also differentiable everywhere except for the points
where

cosh z = 0 =⇒ ez + e−z = 0 =⇒ e2z = −1 = eiπ+2πin, n ∈ Z,

i.e. except for points z = i(π/2 + nπ), n ∈ Z.

ii) Solution:

e1/(z−i) = eg(z), where g(z) = 1/(z − i), i.e. e1/(z−i) is a composition of
two functions f(g(z)). Here f(g) = eg is entire (differentiable for all z)
and g(z) = 1/(z − i) is differentiable for all z except for z = i. Thus,
e1/(z−i) is also differentiable for all z 6= i.

Problem 10: (25 points) Find the general solution of the following differ-
ential equation:

d3w

dz3
− 8w = 0;

write the solution in real form.
Solution: Look for solutions in the form w = ekz, k constant. Substitute
this into the equation and get

k3 − 8 = 0 =⇒ k = 2; 2e2iπ/3; e−2iπ/3,

the three solutions for k. Thus, the general solution of the DE is



w(z) = c1e
2z + c2 exp(2e

2iπ/3z) + c3 exp(2e
−2iπ/3z),

where c1, c2, c3 are arbitrary (complex) constants. To get the real form we
assume now that z is real and express

e±2iπ/3 = cos(2π/3)± i sin(2π/3) = −1

2
± i

√
3

2
,

to rewrite the solution as

w(z) = c1e
2z + e−z(c2e

i
√
3z + c3e

−i
√
3z) =

= c1e
2z + e−z

(

c2(cos(
√
3z) + i sin(

√
3z)) + c3(cos(

√
3z)− i sin(

√
3z))

)

=

= c1e
2z + e−z

(

(c2 + c3) cos(
√
3z) + i(c2 − c3) sin(

√
3z)

)

.

Since the functions of z in the last line are real for real z, to get real solution,
one has to take coefficients A = c1, B = c2+ c3 and C = i(c2− c3) to be real.
Thus,

w(z) = Ae2z + Be−z cos(
√
3z) + Ce−z sin(

√
3z)

is the real form of the solution.

Extra credit: (10 points)
Use ‘ǫ, δ’ formulation to prove that limz→i z

2 = −1

Solution: We are to prove that for any ǫ > 0 there is δ > 0 such that, for
all |z − i| < δ, we have |z2 + 1| < ǫ.
For |z − i| < δ, use the inequalities

|z2 + 1| = |z − i||z + i| = |z − i||z − i+ 2i| ≤ |z − i|(|z − i|+ 2) < δ(2 + δ)

We see that, for a given ǫ > 0, it is enough to have δ(2 + δ) < ǫ, e.g. for
0 < ǫ < 1, it is enough to take e.g. δ = ǫ/3, then δ(2 + δ) < (ǫ/3) · 3 = ǫ, so
also |z2 + 1| < ǫ.


