APPM 4360/5360 Introduction to Complex Variables and Applications EXAM #2 Wednesday March 16, 2016

Two pages (8 /2x11) of notes allowed; no calculators or text books

XC: Extra Credit

- 1. (15) Evaluate the integral $\oint_C f(z)dz$ where C is the unit circle centered at the origin with:
 - a) $f(z) = \frac{\sin z}{z}$
 - b) $f(z) = \frac{e^{iz}}{z-a}, \quad 0 < a < 1$
- 2. (15) Suppose f(z) is an entire function with $|f(z)| \le C_1 |z|^2$ and $|f'(z)| \le C_2 |z|$ with $C_1 > 0, C_2 > 0$ constant. Find the most general form of f(z). Explain your reasoning.
 - 3. (15) Consider $S(z) = \sum_{1}^{\infty} e^{-nz}$
 - a) Show that S(z) converges uniformly for $Rez \ge 1$
 - b) Find the largest region in the z plane where S(z) diverges; explain.
 - 4. (15) Consider $F(z) = \int_0^\infty f(t)e^{izt}dt$
- a) Suppose f(t) is continuous and $|f(t)| \le Ke^{\alpha t}$, K > 0, $\alpha > 0$. Find the region in the complex plane where F(z) is analytic; explain.
- b) Let $f(t)=\frac{e^{-\alpha t^2}}{1+t^3}$, $\alpha>0$. Find the region in the complex plane where F(z) is analytic; explain.
- 5. (20) Find the Laurent series associated with the following functions in the indicated regions
 - a) z + 1/z $0 < |z| < \infty$
 - **b**) $\frac{z}{z^2+1}$, |z| > 1
 - c) $\frac{\log(1+z)}{z^2}, \quad |z|<1$, principal branch

PLEASE TURN OVER

6. (15) Find and classify all singularities and find the strength of any pole and the residues in the finite z plane for the following functions:

a)
$$f(z) = \frac{z^2 + z + 1}{z^2}$$

b)
$$f(z) = \cos(1/z^2)$$

c)
$$f(z) = \cot z$$

A function that has period p satisfies f(z+p)=f(z). Suppose f(z) has periods p=1 and p=i and let f(z) be an entire function. Prove that f(z) must be constant.