Problem 1: (20 points) Answer each part of this question with TRUE or FALSE. DO NOT write T or F. No justification for your answers is required.

(a) Let \(A \) be a matrix such that \(\det(A) = 5 \). The determinant of \(A \)'s reduced row echelon form must be 1.

(b) If the rank of an \(m \times n \) matrix is \(n \), then the system \(A\vec{x} = \vec{b} \) has exactly one solution.

(c) If \(A \) is an \(n \times n \) invertible matrix, then the rows of \(A \) form a basis for \(\mathbb{R}^n \).

(d) A basis for \(\mathbb{P}_3 \), the set of polynomials of degree 3 or less, is \(\{ t^3 - t^2 - t - 1, t^2 + t + 2, 1 \} \).

Solution:

(a) True
(b) False. Inconsistencies can still occur for the overdetermined case, \(m > n \), e.g.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\vec{x}
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}
\]

(c) True
(d) False. This cannot be a spanning set since \(\dim(\mathbb{P}_3) = 4 \).

Problem 2: (20 points) Consider the system of algebraic equations

\[
\begin{align*}
x_1 + 2x_2 + 3x_3 &= 7 \\
2x_1 + x_2 - 2x_3 &= 3 \\
3x_1 - 7x_3 &= -1
\end{align*}
\]

(a) Write the system of algebraic equations (1) as a single matrix equation, \(A\vec{x} = \vec{b} \), where

\[
\vec{x} =
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\].

Clearly identify the matrix \(A \) and the vector \(\vec{b} \).

(b) Use Gauss-Jordan elimination to solve the matrix equation \(A\vec{x} = \vec{0} \) for all possible solutions, using the matrix \(A \) and vector \(\vec{x} \) from part (a).

(c) The vector \(\vec{x}_p =
\begin{bmatrix}
2 \\
1 \\
1
\end{bmatrix}
\) is a solution to the matrix equation \(A\vec{x} = \vec{b} \) from part (a). Give all possible solutions to the matrix equation \(A\vec{x} = \vec{b} \) from part (a).

(d) Verify your solution to part (c).

Solution:

(a) \[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 1 & -2 \\
3 & 0 & -7
\end{bmatrix}
\begin{bmatrix}
\vec{x}
\end{bmatrix}
=
\begin{bmatrix}
7 \\
3 \\
-1
\end{bmatrix}
\]

\(A \) is the matrix, \(\vec{x} \) is the vector
Problem 3: (20 points) Consider the matrix
\[
A = \begin{bmatrix}
1 - \lambda & 3 & 4 \\
3 & 3 - \lambda & 3 \\
2 & 0 & -1 - \lambda
\end{bmatrix}
\]
(2)

(a) Identify good choices of rows or columns to use while calculating the determinant by the method of cofactors and explain why.

(b) Calculate the determinant of \(A \) via cofactors.

(c) Find all values of \(\lambda \) such that \(A\vec{v} = \vec{0} \) has at least two solutions. Explain your choice of values.

Solution:

(a) The third row or the second column would be good because the zeros would reduce the total work required.

(b) \(\det (A) = \lambda (\lambda + 3) (\lambda - 6) \)

(c) \(\lambda = 0, -3, 6 \) all make \(\det (A) = 0 \), meaning that \(A\vec{v} = \vec{0} \) has infinitely many solutions.

Problem 4: (20 points) Consider the matrix
\[
A = \begin{bmatrix}
1 & 3 & -4 & 1 \\
4 & 2 & -5 & 5 \\
5 & -5 & 2 & 7
\end{bmatrix}
\]

(a) What is the rank of \(A \)?

(b) Find a basis and the dimension of the column space of \(A \).

(c) Find a basis and the dimension of the row space of \(A \),

\[
\text{span} \{ \begin{bmatrix} 1 & 3 & -4 & 1 \\ 4 & 2 & -5 & 5 \\ 5 & -5 & 2 & 7 \end{bmatrix} \}.
\]

(d) The null space of a matrix \(A \) is the set of all vectors \(\vec{x} \) with \(A\vec{x} = \vec{0} \), i.e.

\[
\left\{ \vec{x} \in \mathbb{R}^4 \mid A\vec{x} = \vec{0} \right\}.
\]
Find a basis and the dimension of the null space of \(A \).

Solution:

The REF of \(A \) is

\[
\begin{bmatrix}
1 & 3 & -4 & 1 \\
0 & 1 & -\frac{11}{10} & -\frac{1}{10} \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

(a) \(\text{rank } A = 2 \)

(b) \(\text{dim (col } A) = 2 \) with basis \(\left\{ \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix} \right\} \)

(c) \(\text{dim (row } A) = 2 \) with basis \(\left\{ \begin{bmatrix} 1 & 3 & -4 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -\frac{11}{10} & -\frac{1}{10} \end{bmatrix} \right\} \) or \(\left\{ \begin{bmatrix} 1 & 3 & -4 & 1 \end{bmatrix}, \begin{bmatrix} 4 & 2 & -5 & 5 \end{bmatrix} \right\} \)

(d) The RREF of \(A \) is

\[
\begin{bmatrix}
1 & 0 & -\frac{7}{10} & \frac{13}{10} \\
0 & 1 & -\frac{11}{10} & -\frac{1}{10} \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

so

\[\vec{x} = s \begin{bmatrix} \frac{7}{10} \\ \frac{1}{10} \\ 1 \end{bmatrix} + t \begin{bmatrix} -\frac{13}{10} \\ -\frac{1}{10} \\ 0 \end{bmatrix}\]

and \(\text{dim (null } A) = 2 \) with basis \(\left\{ \begin{bmatrix} 7 \\ 11 \\ 10 \end{bmatrix}, \begin{bmatrix} -13 \\ 0 \\ 10 \end{bmatrix} \right\} \).

Problem 5: (20 points) The following parts are unrelated:

(a) Determine whether or not the set of functions \(\left\{ \begin{bmatrix} \sin(2t) \\ \sqrt{2} \sin(t) \end{bmatrix}, \begin{bmatrix} \sqrt{2} \cos(t) \\ \cos(2t) \end{bmatrix} \right\} \) is linearly independent on all of \(\mathbb{R} \).

(b) Consider the differential equation \(y^{(3)} + 6y^{(2)} + 11y' + 6y = 0 \) (3)

(i) Verify the following three solutions of (3):

\[y_1(t) = e^{-t}, \quad y_2(t) = e^{-2t}, \quad y_3(t) = e^{-3t}\]

Suggestion: Define \(y_j(t) = e^{-jt} \) and plug in \(j = 1, 2, 3 \) later.

(ii) Define

\[y(t) = c_1y_1(t) + c_2y_2(t) + c_3y_3(t)\]

for some \(c_1, c_2, c_3 \in \mathbb{R} \). Is \(y \) also a solution of (3)?

(iii) Determine whether or not the set of functions \(\{y_1(t), y_2(t), y_3(t)\} \) is linearly independent on all of \(\mathbb{R} \).

Solution:
(a) The functions will be linearly independent if the only \(c_1, c_2 \) satisfying
\[
c_1 \begin{bmatrix} \sin(2t) \\ \sqrt{2}\sin(t) \end{bmatrix} + c_2 \begin{bmatrix} \sqrt{2}\cos(t) \\ \cos(2t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
for all \(t \) are \(c_1 = c_2 = 0 \). For \(t = \pi/4 \) we have
\[
c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
Since \(\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 \), this implies \(c_1 = c_2 = 0 \) so the functions are linearly independent.

(b) (i) \(y_j^{(3)} + 6y_j^{(2)} + 11y_j' + 6y_j = e^{-jt} (-j^3 + 6j^2 - 11j + 6) = 0 \)
for \(j = 1, 2, 3 \).

(ii) Yes, the superposition principle applies since the DE is linear homogeneous.

(iii) The set \(\{y_1, y_2, y_3\} \) is linearly independent since the Wronskian is never zero:
\[
W[y_1, y_2, y_3](t) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} e^{-t} & e^{-2t} & e^{-3t} \\ -e^{-t} & -2e^{-2t} & -3e^{-3t} \\ e^{-t} & 4e^{-2t} & 9e^{-3t} \end{vmatrix} = -e^{-6t} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = -e^{-6t}((18 - 12) - (9 - 3) + (4 - 2)) = -2e^{-6t} \neq 0
\]