1. (15 pts) Indicate in your blue book which of the following statements are True and which are False. No explanation required.

(a) \(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w} \)
(b) The cross product of two nonzero vectors that are scalar multiples of each other has magnitude 0.
(c) \(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \times \mathbf{b}) \times \mathbf{a} \)
(d) The intersection of the plane \(y = 0 \) and the surface \(4x^2 + y^2 + 4z^2 - 4y - 24z + 36 = 0 \) is an ellipse.
(e) If \(\mathbf{u}(t) \) and \(\mathbf{v}(t) \) are differentiable vector functions, then \(\frac{d}{dt} [\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}'(t) \)

Solution:

(a) (3 pts) **False:** The left side is defined, but the cross product of a scalar and a vector is not defined.

(b) (3 pts) **True:** \(||\mathbf{a} \times \mathbf{b}|| = ||\mathbf{a}|| ||\mathbf{b}|| \sin(0) = 0. \)

(c) (3 pts) **True:** \(\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \).

(d) (3 pts) **False:** The intersection satisfies \(4x^2 + 4(z - 3)^2 = 0 \) or \((x, y, z) = (0, 0, 3) \) which is a point.

(e) (3 pts) **False:** Instead, \(\frac{d}{dt} [\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}(t) \times \mathbf{v}'(t) + \mathbf{u}'(t) \times \mathbf{v}(t) \).

2. (10 pts) An important parameter in aircraft takeoff and landing operations is the crosswind, the component of the wind perpendicular to a runway. Suppose takeoffs and landings on a particular runway must be suspended when the crosswind exceeds 15 mph. If the wind is blowing from the west at 36 mph, can aircraft use a runway directed N60°W? Justify your answer.

Solution:

Method 1 The crosswind, \(\mathbf{c} \), is the orthogonal projection of the wind vector, \(\mathbf{w} \), onto the runway, \(\mathbf{r} \).

The unit vector along the runway is \(\mathbf{r} = \langle \cos(150°), \sin(150°) \rangle = \langle -\frac{\sqrt{3}}{2}, \frac{1}{2} \rangle \). The wind vector is \(36\mathbf{i} = \langle 36, 0 \rangle \).

\[
\text{proj}_w \mathbf{w} = \frac{\mathbf{w} \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}} \mathbf{r} = \left(\frac{36, 0}{\langle -\frac{\sqrt{3}}{2}, \frac{1}{2} \rangle \cdot \langle -\frac{\sqrt{3}}{2}, \frac{1}{2} \rangle} \right) \left(\frac{-\sqrt{3}}{2}, \frac{1}{2} \right) = -18\sqrt{3} \left(\frac{-\sqrt{3}}{2}, \frac{1}{2} \right) = \langle 27, -9\sqrt{3} \rangle.
\]

\[
\text{orth}_w \mathbf{w} = \mathbf{w} - \text{proj}_w \mathbf{w} = \langle 36, 0 \rangle - \langle 27, -9\sqrt{3} \rangle = \langle 9, 9\sqrt{3} \rangle.
\]

\[
||\text{orth}_w \mathbf{w}|| = ||9 \langle 1, \sqrt{3} \rangle|| = 9 \cdot 2 = 18 \text{ mph}.
\]

The wind exceeds 15 mph, so the runway is unusable.

Method 2 \(||\mathbf{c}|| = ||\mathbf{w}|| \sin(30°) = 36(1/2) = 18 \) mph. The runway is unusable.

3. (15 pts) A particle travels along the helix given by \(\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k} \). At time \(t = \pi \) the particle leaves the path and flies off on a tangent. Find the location of the particle at \(t = 2\pi \) assuming no forces act on it after it leaves the helix.

Solution:

The particle will fly along a line in the direction of the tangent vector to the helix at \(t = \pi \), that is, \(\mathbf{r}'(\pi) \), that contains the point \(\mathbf{r}(\pi) \). The tangent vector is \(\mathbf{r}'(t) = (-\sin t, \cos t, 1) \). We can parametrize the line as

\[
\mathbf{r}_{\text{line}}(s) = \mathbf{r}(\pi) + s\mathbf{r}'(\pi) = (-1, 0, \pi) + s(0, -1, 1) = (-1, -s, \pi + s) \quad s \geq \pi
\]

When \(t = 2\pi, s = \pi \) and the particle has position vector \(\mathbf{r}_{\text{line}}(\pi) = (-1, -\pi, 2\pi) \).
4. (14 pts) Consider the vector function \(\mathbf{r}(t) = \langle t^2, \sin t - t \cos t, \cos t + t \sin t \rangle \) for \(0 \leq t \leq c \). Find the value of \(c \) for which the arc length is \(2\sqrt{5} \).

SOLUTION:

The arc length function is

\[
 s(t) = \int_0^t \| \mathbf{r}'(u) \| \, du.
\]

We can calculate

\[
 \mathbf{r}'(t) = \langle 2t, \cos t - \cos t + \sin t + t \cos t, \cos t + \sin t - \cos t + t \sin t \rangle = \langle 2t, t \sin t, t \cos t \rangle.
\]

\[
 \| \mathbf{r}'(t) \| = \sqrt{4t^2 + t^2(\sin t)^2 + t^2(\cos t)^2} = \sqrt{5t^2} = \sqrt{5}t, \quad \text{for } t \geq 0.
\]

We want to solve

\[
 2\sqrt{5} = s(c) = \int_0^c \sqrt{5}t \, dt = \frac{\sqrt{5}}{2} t^2 \bigg|_0^c = \frac{\sqrt{5}}{2} c^2.
\]

We must have \(4 = c^2 \) or \(c = \pm 2 \). Since \(0 \leq t \leq c, \ c = 2 \).

5. (16 pts) Consider two glass plates (planes). The first plane, \(P_1 \), intersects the \(x \)-, \(y \)-, and \(z \)-axes at the locations \((2,0,0) \), \((0,2,0) \), and \((0,0,3) \). The second plane, \(P_2 \), is parallel to the \(x \)-axis and intersects the remaining two axes at the same points as plane \(P_1 \).

(a) Determine the equation of plane \(P_1 \) and its unit normal vector \(\mathbf{n}_1 \).

(b) Determine the equation of plane \(P_2 \) and its unit normal vector \(\mathbf{n}_2 \).

(c) Determine the cosine of the angle between the glass plates.

(d) A laser beam at the origin is aimed perpendicular to plane \(P_1 \) and pierces the plane \(P_2 \) at point \(Q \). What are the coordinates of point \(Q \)?

SOLUTION:

(a) Since we know the points where the plane intersects the coordinate axes, the equation for \(P_1 \) is

\[
 \frac{x}{2} + \frac{y}{2} + \frac{z}{3} = 1 \implies 3x + 3y + 2z = 6
\]

Its unit normal is

\[
 \mathbf{n}_1 = \frac{\langle 3, 3, 2 \rangle}{\|\langle 3, 3, 2 \rangle\|} = \frac{\langle 3, 3, 2 \rangle}{\sqrt{9 + 9 + 4}} = \frac{1}{\sqrt{22}} \langle 3, 3, 2 \rangle
\]

(b) Two points in \(P_2 \) are \(A(0,2,0) \) and \(B(0,0,3) \). Since \(P_2 \) is parallel to the \(x \)-axis, another point in \(P_2 \) is \(C(2,0,3) \). The vector \(\mathbf{AB} \times \mathbf{AC} \) is normal to \(P_2 \).

\[
 \mathbf{AB} \times \mathbf{AC} = \begin{vmatrix}
 1 & j & k \\
 0 & -2 & 3 \\
 2 & -2 & 3
\end{vmatrix} = 6j + 4k
\]

The unit normal to \(P_2 \) is

\[
 \mathbf{n}_2 = \frac{\langle 0, 6, 4 \rangle}{\|\langle 0, 6, 4 \rangle\|} = \frac{\langle 0, 6, 4 \rangle}{\sqrt{0 + 36 + 16}} = \frac{\langle 0, 6, 4 \rangle}{\sqrt{52}} = \frac{1}{\sqrt{13}} \langle 0, 3, 2 \rangle
\]

The equation of \(P_2 \) is \(\mathbf{n}_2 \cdot \langle x - 0, y - 0, z - 3 \rangle = 3y + 2(z - 3) = 0 \) or

\[
 3y + 2z = 6
\]

(c)

\[
 \cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{\|\mathbf{n}_1\|\|\mathbf{n}_2\|} = \frac{9 + 4}{\sqrt{13}\sqrt{22}} = \frac{\sqrt{13}}{22}
\]
6. (15 pts) Two bugs fly along the space curves given by

\[\mathbf{r}_1(t) = (t, t^2, t^3) \quad \text{and} \quad \mathbf{r}_2(t) = (1 + 2t, 1 + 6t, 1 + 14t) \quad -\infty < t < \infty \]

Determine the time(s) and position(s), if any, where the bugs collide and the time(s) and position(s), if any, where the bugs’ paths intersect.

Solution:
To collide, the bugs must occupy the same point at the same time. That is, \(\mathbf{r}_1(t) = \mathbf{r}_2(t) \) or \((t, t^2, t^3) = (1 + 2t, 1 + 6t, 1 + 14t) \).

\[t = 1 + 2t \Rightarrow t = -1. \]

However, this does not satisfy the other equations. The bugs do not collide.

The paths intersect if there exist \(t \) and \(s \) such that \(\mathbf{r}_1(t) = \mathbf{r}_2(s) \) or

\[t = 1 + 2s, \]
\[t^2 = 1 + 6s, \]
\[t^3 = 1 + 14s. \]

Substitute the first equation into the second to yield

\[(1 + 2s)^2 = 1 + 6s \Rightarrow 1 + 4s + 4s^2 = 1 + 6s \Rightarrow 4s^2 - 2s = 0 \Rightarrow 2s(2s - 1) = 0, \]

so \(s = 0 \) or \(s = \frac{1}{2} \).

If \(s = 0 \), \(t = 1 + 2(0) = 1 \) and \(\mathbf{r}_1(1) = \mathbf{r}_2(0) = (1, 1, 1) \), so one point of intersection is \((1, 1, 1) \).

If \(s = \frac{1}{2}, t = 1 + 2 \left(\frac{1}{2} \right) = 2 \) and \(\mathbf{r}_1(2) = \mathbf{r}_2 \left(\frac{1}{2} \right) = (2, 4, 8) \), so one point of intersection is \((2, 4, 8) \).

Note that these values of \(s \) and \(t \) also satisfy the third equation above.

7. (15 pts) Find the position vector \(\mathbf{r}(t) \) of an object subject to the following conditions: it undergoes an acceleration of \(e^t \mathbf{i} + 2t \mathbf{j} + (t + 1) \mathbf{k} \) for \(t \geq 0 \) and it begins its motion at \(2 \mathbf{i} + \mathbf{j} + \mathbf{k} \) with a velocity of \(\mathbf{i} + \mathbf{k} \).

Solution:
Integrate the acceleration to find that

\[\mathbf{v}(t) = \int \mathbf{a}(t) \, dt = \int \mathbf{r}''(t) \, dt = \mathbf{r}'(t) = \left\langle e^t, 2t, t + 1 \right\rangle \quad \Rightarrow \quad \mathbf{C} = \left\langle 0, 0, 1 \right\rangle \quad \Rightarrow \quad \mathbf{r}'(t) = \left\langle e^t, t^2, \frac{1}{2} t^2 + t + 1 \right\rangle. \]

Integrate the velocity to find that

\[\mathbf{r}(t) = \int \mathbf{v}(t) \, dt = \int \mathbf{r}'(t) \, dt = \left\langle e^t, t^2, \frac{1}{2} t^2 + t + 1 \right\rangle \quad \Rightarrow \quad \mathbf{C} = \left\langle 1, 1, 1 \right\rangle \quad \Rightarrow \quad \mathbf{r}(t) = \left\langle e^t + 1, \frac{1}{3} t^3 + 1, \frac{1}{6} t^3 + \frac{1}{2} t^2 + t + 1 \right\rangle. \]