1. (30 pts) Consider the function \(f(x) = \frac{\sqrt{6x + 1} - 5}{x - 4} \).

(a) (10 pts) Give the domain of the function \(y = \frac{1}{f(x)} \) in interval notation.

(b) (10 pts) Find \(\lim_{x \to 0^+} f(x) \). Show all work.

(c) (10 pts) Classify all discontinuities of \(f(x) \). If any of the discontinuities are removable, how would you redefine \(f(x) \) as a piece-wise defined function at the discontinuity to make the function continuous there?

Solution: (a) (10 pts) Note \(y = \frac{x - 4}{\sqrt{6x + 1} - 5} \) and we need \(6x + 1 \geq 0 \) which implies \(x \geq -1/6 \) and we need \(\sqrt{6x + 1} - 5 \neq 0 \) which implies \(x \neq 4 \), thus the domain is \([-1/6, 4) \cup (4, +\infty)\).

(b) (10 pts) Since \(f(x) \) is continuous at \(x = 0 \) we have \(\lim_{x \to 0^+} f(x) = f(0) = 4/4 = 1 \).

(c) (10 pts) The function \(f(x) \) is undefined for \(x < -1/6 \) and at \(x = 4 \), furthermore at \(x = 4 \) we have \(\lim_{x \to 4^-} \frac{\sqrt{6x + 1} - 5}{x - 4} = \frac{6}{10} = 3/5 \).

thus there is a removable discontinuity at \(x = 4 \) and we can define \(f(x) = \begin{cases} \frac{\sqrt{6x + 1} - 5}{x - 4}, & \text{if } x \neq 4 \\ 3/5, & \text{if } x = 4 \end{cases} \).

2. (24 pts) The following problems are not related. Justify all answers.

(a) (8 pts) Find all vertical asymptotes for the function \(f(x) = \frac{3x^2 - x - 4}{x^2 - 1} \). Justify your answer with limits.

(b) (8 pts) If \(g(x) = \frac{(x + 5)|x + 2|}{(x + 2)} \), find \(\lim_{x \to -2^-} g(x) \) and \(\lim_{x \to -2^+} g(x) \). Does \(\lim_{x \to -2} g(x) \) exist? Why or why not?

(c) (8 pts) Find all horizontal asymptotes of \(h(x) = \begin{cases} x^2/(x^2 + 1), & \text{if } x < 0 \\ x - 2, & \text{if } x \geq 0 \end{cases} \). Justify your answer with limits.

Solution: (a) (8 pts) Note that \(\frac{3x^2 - x - 4}{x^2 - 1} = \frac{(3x - 4)(x + 1)}{(x - 1)(x + 1)} = \frac{3x - 4}{x - 1} \), thus we have a removable discontinuity at \(x = -1 \), not a vertical asymptote and at \(x = 1 \) we have \(\lim_{x \to 1^-} \frac{3x^2 - x - 4}{x^2 - 1} = \lim_{x \to 1^-} \frac{3x - 4}{x - 1} = +\infty \).
and so we have a vertical asymptote at $x = 1$ (note that similarly $\lim_{x \to 1^+} f(x) = -\infty$).

(b)(8 pts) Checking the one-sided limits at $x = -2$ yields

$$\lim_{x \to -2^-} g(x) = \lim_{x \to -2^-} \frac{(x + 5)|x + 2|}{(x + 2)} = \lim_{x \to -2^-} \frac{(x + 5) \cdot [-1]}{(x + 2)} = \lim_{x \to -2^-} -(x + 5) = -3$$

and

$$\lim_{x \to -2^+} g(x) = \lim_{x \to -2^+} \frac{(x + 5)|x + 2|}{(x + 2)} = \lim_{x \to -2^+} \frac{(x + 5) \cdot (x + 2)}{(x + 2)} = \lim_{x \to -2^+} (x + 5) = 3$$

thus $\lim_{x \to -2^-} g(x)$ does not exist since $\lim_{x \to -2^-} g(x) \neq \lim_{x \to -2^+} g(x)$.

(c)(8 pts) For horizontal asymptotes note that

$$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} \frac{x^2}{x^2 + 1} = \lim_{x \to -\infty} \frac{x^2}{x^2(1 + 1/x^2)} = 1 \Rightarrow \text{H.A. at } y = 1$$

and

$$\lim_{x \to \infty} h(x) = \lim_{x \to \infty} \frac{x - 2}{x^2 - 4} = \lim_{x \to -\infty} \frac{(x - 2) / (x^2)}{x^2(1 - 4/x^2)} = \lim_{x \to \infty} \frac{(1 - 2/x) / x^2}{(1 - 4/x^2) x^2} = \lim_{x \to \infty} \frac{1 - 2/x}{x(1 - 4/x^2)} = 0 \Rightarrow \text{H.A. at } y = 0$$

so $h(x)$ has horizontal asymptotes at $y = 0$ and $y = 1$.

3. (20 pts) Justify all answers.

(a)(10 pts) Show that the curves $s(x) = \cos(x)$ and $t(x) = x^2 - 2$ intersect at least once in the interval $[0, \pi]$. Note: A graph is not sufficient proof for this problem. (Hint: This can be done using one of the theorems we studied.)

(b)(10 pts) Write the function $f(x) = \frac{x + 4}{|x| + 2}$ as a piece-wise defined function without the absolute value symbol. Is $f(x)$ continuous at $x = 0$? Explain.

Solution: (a)(10 pts) Define $f(x) = s(x) - t(x) = \cos(x) - x^2 + 2$ and now we show that $f(x)$ has a root in $[0, \pi]$. Since $f(x)$ is continuous on $[0, \pi]$ and $f(0) = 1 - 0 + 2 = 3 > 0$ and $f(\pi) = -1 - \pi^2 + 2 = 1 - \pi^2 < 0$, i.e. $f(\pi) < 0 < f(0)$, thus, by the Intermediate Value Theorem, there exists at least one number c in $(0, \pi)$ such that $f(c) = 0$. Now if $f(c) = 0$ then $s(c) - t(c) = 0$, i.e. $\cos(c) = c^2 - 2$ for some c in $[0, \pi]$ and so we have shown that $s(x)$ and $t(x)$ intersect at least once in the interval $[0, \pi]$.

(b)(10 pts) Note that $f(x) = \begin{cases}
\frac{x + 4}{x + 2}, & \text{if } x \geq 0 \\
\frac{x + 4}{2 - x}, & \text{if } x < 0
\end{cases}$ and note that $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = 4/2 = 2 = f(0)$ and so we see that $f(x)$ is continuous at $x = 0$.
4. (26 pts) Justify all answers.

(a) (10 pts) A ball thrown vertically upward from the ground at a velocity of 96 ft/sec reaches a height of \(s(t) = -16t^2 + 96t \) feet in \(t \) seconds. Find the instantaneous velocity of the ball at any time \(t \), \(v(t) \), using the limit definition of the derivative.

(b) (8 pts) Find the following limit: \(\lim_{x \to 0} \frac{\tan(x)}{x} \) (You may not use L'Hôpital's Rule.)

(c) (8 pts) Suppose \(f'(x) = \sec(x) \) and \(f(\pi/4) = 1 \), evaluate \(\lim_{x \to \pi/4} \frac{f(x) - 1}{x - \pi/4} \).

Solution:

(a) (10 pts) Using the limit definition we have

\[
v(t) = s'(t) = \lim_{h \to 0} \frac{s(t + h) - s(t)}{h} = \lim_{h \to 0} \frac{-16(t + h)^2 + 96(t + h) - (-16t^2 + 96t)}{h}
\]

\[
= \lim_{h \to 0} \frac{-16(t^2 + 2th + h^2) + 96t + 96h - (-16t^2 + 96t)}{h}
\]

\[
= \lim_{h \to 0} \frac{-32th - 16h^2 + 96h}{h} = \lim_{h \to 0} \frac{h(-32t - 16h + 96)}{h} = -32t + 96
\]

so the instantaneous velocity is \(v(t) = -32t + 96 \) ft/sec.

Alternately, one could also calculate

\[
v(t) = s'(t) = \lim_{a \to t} \frac{s(t) - s(a)}{t - a} = \lim_{a \to t} \frac{-16t^2 + 96t - (-16a^2 + 96a)}{t - a}
\]

\[
= \lim_{a \to t} \frac{-16(t^2 - a^2) + 96(t - a)}{t - a}
\]

\[
= \lim_{a \to t} \frac{-16(t-a)(t+a) + 96(t-a)}{t-a} = \lim_{a \to t} -16(t + a) + 96 = -32t + 96.
\]

(b) (8 pts) Note that

\[
\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{x \to 0} \frac{\sin(x)}{x \cos(x)} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \frac{1}{\cos(x)} = 1 \cdot 1 = 1
\]

where in the last equality we used the special limit \(\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \).

(c) (8 pts) By definition we have

\[
\lim_{x \to \pi/4} \frac{f(x) - 1}{x - \pi/4} = \lim_{x \to \pi/4} \frac{f(x) - f(\pi/4)}{x - \pi/4} = f'(\pi/4) = \sec(\pi/4) = \sqrt{2}
\]