1. [14 pts] Solve the following equations.
 (a) \(2^{x^2-6x} = \frac{1}{32}\)
 (b) \(\log(x + 2) + \log(x - 1) = 1\)

Solution:
(a)
\[2^{x^2-6x} = 2^{-5} \iff x^2 - 6x = 5 \iff x^2 - 6x + 5 = 0 \iff (x - 5)(x - 1) = 0 \iff x = 1 \text{ or } x = 5\]
Alternatively,
\[
\log_2(2^{x^2-6x}) = \log_2 \frac{1}{32} = \log_2 2^{-5}
\]
\[(x^2 - 6x) \log_2 2 = -5 \log_2 2
\]
\[x^2 - 6x = -5
\]
\[x^2 - 6x + 5 = 0
\]
\[(x - 5)(x - 1) = 0
\]
\[x = 1 \text{ or } x = 5\]

(b)
\[\log(x + 2) + \log(x - 1) = 1
\]
\[\log((x + 2)(x - 1)) = 1
\]
\[(x + 2)(x - 1) = 10^1 \text{ or } 10^{\log((x+2)(x-1))} = 10^1
\]
\[x^2 + x - 2 = 10
\]
\[x^2 + x - 12 = 0
\]
\[(x + 4)(x - 3) = 0
\]
\[x = -4 \text{ or } x = 3\]
Checking these potential solutions in the original equation shows that \(x = -4\) is not a solution since we cannot take logarithms of negative numbers. Thus the solution is \(x = 3\).

2. (a) [7 pts] Using any method you choose, show that the function \(f(x) = \frac{2x}{x + 1}\) is one-to-one and find its inverse.
(b) [7 pts] Consider the function \(f(x) = \sqrt{x^4 + x^3 + 1}\) with \(x \geq 0\). Evaluate the derivative of \(f^{-1}(x)\) at \(\sqrt{3}\), that is, find \((f^{-1})'(\sqrt{3})\). You can assume that \(f\), with the restricted domain, is one-to-one.

Solution:
(a) Using a graph: Graph of \(f(x)\) passes the horizontal line test and is thus one-to-one.
Using algebra: Let x_1 and x_2 be two points in the domain of $f(x)$ and assume that $f(x_1) = f(x_2)$. Then

\[
\frac{2x_1}{x_1 + 1} = \frac{2x_2}{x_2 + 1}
\]

\[
\iff 2x_1(x_2 + 1) = 2x_2(x_1 + 1)
\]

\[
\iff 2x_1x_2 + 2x_1 = 2x_2x_1 + 2x_2
\]

\[
\iff 2x_1 = 2x_2
\]

\[
\iff x_1 = x_2
\]

Since $f(x_1) = f(x_2) \implies x_1 = x_2$, $f(x)$ is one-to-one.

Using calculus: $f'(x) = \frac{(x + 1)(2) - 2x(1)}{(x + 1)^2} = \frac{2}{(x + 1)^2} > 0$ for all x in the domain of f, which is $(-\infty, -1) \cup (-1, \infty)$, implying that $f(x)$ is increasing throughout its domain and therefore one-to-one.

To find the inverse, let $y = \frac{2x}{x + 1}$. Then

\[
x = \frac{2y}{y + 1}
\]

\[
x(y + 1) = 2y
\]

\[
xy - 2y = -x
\]

\[
y(x - 2) = -x
\]

\[
y = \frac{-x}{x - 2}
\]

\[
f^{-1}(x) = \frac{x}{2 - x}
\]

(b) Begin by finding $f^{-1}(\sqrt{3})$. This is accomplished by solving $\sqrt{3} = \sqrt{x^4 + x^3 + 1}$ which, by inspection, has solution $x = 1$. Thus $f^{-1}(\sqrt{3}) = 1$. Next we find $f'(x) = \frac{4x^3 + 3x^2}{2\sqrt{x^4 + x^3 + 1}}$. Finally, then

\[
(f^{-1})'((\sqrt{3})) = \frac{\frac{1}{f'(f^{-1}((\sqrt{3}))}}{f'(1)} = \frac{1}{\frac{4(1)^2 + 3(1)^2}{2\sqrt{1^4 + 1^3 + 1}}} = \frac{1}{\frac{2}{\sqrt{3}}} = \frac{2\sqrt{3}}{7}
\]
3. The following questions are unrelated.

(a) [7 pts] Differentiate \(g(w) = \frac{\ln w}{1 + \ln 2w} \), simplifying your answer completely.

(b) [7 pts] Use logarithmic differentiation to find \(y' \) if \(y = \sqrt{x+1} \). Simplify your answer completely.

(c) [7 pts] Consider the function \(f(x) = 2 \sin^{-1}(\ln x) \).
 i. Find the domain of \(f \).
 ii. Find the range of \(f \).
 iii. Find the derivative of \(f \).

(d) [7 pts] Find the intervals of increase or decrease, the intervals of concavity, and the points of inflection of the function \(f(x) = (1-x)e^{-x} \).

SOLUTION:

(a)

\[
g'(w) = \frac{(1 + \ln 2w) \left(\frac{1}{w} \right) - \ln w \left(\frac{1}{w} \right)(2)}{(1 + \ln 2w)^2} = \frac{1 + \ln 2}{w(1 + \ln 2w)^2}
\]

(b) Begin by taking the natural logarithm of both sides of the equation.

\[
\ln y = \ln \sqrt{x+1} = \ln[x(x+1)]^{1/2} = \frac{1}{2} \ln [x + \ln(x+1)]
\]

Then differentiate and simplify:

\[
\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left(\frac{1}{x} + \frac{1}{x+1} \right) = \frac{1}{2} \left(\frac{x + 1 + x}{x(x+1)} \right) = \frac{2x + 1}{2x(x+1)}
\]

\[
\Rightarrow \frac{dy}{dx} = \sqrt{x(x+1)} \left(\frac{2x + 1}{2(x+1)} \right) = \frac{2x + 1}{2\sqrt{x(x+1)}}
\]

(c) i. The domain of \(\sin^{-1} x \) is \([-1, 1]\). Thus we must have \(-1 \leq \ln x \leq 1 \implies e^{-1} \leq e^{\ln x} \leq e^1 \) or \(x \in [\frac{1}{e}, e] \).

 ii. The range of \(\sin^{-1} x \) is \([-\pi, \pi]\). Thus the range of \(f \) is \([\frac{-\pi}{2}, \frac{\pi}{2}]\) (vertical stretching).

 iii. Using the chain rule yields \(f'(x) = \frac{2}{x \sqrt{1 - (\ln x)^2}} \)

(d)

\[
f'(x) = (1-x)(e^{-x})(-1) + e^{-x}(-1) = -e^{-x} + xe^{-x} - e^{-x} = -2e^{-x} + xe^{-x} = e^{-x}(x - 2)
\]

\[
f'(x) \quad \frac{2}{x} \quad + \quad x
\]

From the above chart, \(f(x) \) is decreasing on \((-\infty, 2)\) and increasing on \((2, \infty)\).

\[
f''(x) = e^{-x}(1) + (x-2)e^{-x}(-1) = e^{-x} - xe^{-x} + 2e^{-x} = 3e^{-x} - xe^{-x} = e^{-x}(3-x)
\]

\[
f''(x) \quad + \quad 3 \quad - \quad x
\]

From the above chart, \(f(x) \) is concave up on \((-\infty, 3)\) and concave down on \((3, \infty)\). \(f \) has an inflection point at \((3, f(3)) = (3, (1 - 3)e^{-3}) = (3, -2/e^3)\)

\[\boxed{\text{Solution Complete}}\]
4. [24 pts] Evaluate the following integrals.

(a) \(\int \frac{e^{2/x}}{x^2} \, dx \)
(b) \(\int \left(t^{-1} + \frac{1}{1 - 3t} \right) \, dt \)
(c) \(\int_{-\frac{2\pi}{3}}^{\frac{2}{3}} \frac{1}{4t^2 + 9} \, dt \)

SOLUTION:

(a) Let \(u = 2/x \) so that \(du = -2/x^2 \, dx \) \(\Rightarrow \) \(dx = -(x^2/2) \, du \). Then

\[
\int \frac{e^{2/x}}{x^2} \, dx = \int e^u \left(-\frac{x^2}{2} \right) \, du = -\frac{1}{2} \int e^u \, du = -\frac{1}{2} e^u + C = -\frac{1}{2} e^{2/x} + C
\]

(b) We can write the original integral as \(\int \left(t^{-1} + \frac{1}{1 - 3t} \right) \, dt = \int \frac{1}{t} \, dt + \int \frac{1}{1 - 3t} \, dt \)

The first integral is simply \(\ln |t| + C_1 \). For the second one, let \(u = 1 - 3t \), implying that \(du = -3 \, dt \) or \(dt = -\frac{1}{3} \, du \). Then

\[
\int \frac{1}{1 - 3t} \, dt = \int \frac{1}{u} \left(-\frac{1}{3} \right) \, du = -\frac{1}{3} \ln |u| + C_2 = -\frac{1}{3} \ln |1 - 3t| + C_2
\]

Therefore

\[
\int \left(t^{-1} + \frac{1}{1 - 3t} \right) \, dt = \ln |t| + C_1 - \frac{1}{3} \ln |1 - 3t| + C_2 = \ln \left| \frac{t}{(1 - 3t)^{1/3}} \right| + C
\]

(c)

\[
\int_{-\frac{2\pi}{3}}^{\frac{2}{3}} \frac{1}{4t^2 + 9} \, dt = \int_{-\frac{2\pi}{3}}^{\frac{2}{3}} \frac{1}{9 \left(\frac{4}{9} t^2 + 1 \right)} \, dt = \frac{1}{9} \int_{-\frac{2\pi}{3}}^{\frac{2}{3}} \frac{1}{\left(\frac{2}{3} \right)^2 + 1} \, dt
\]

Now let \(u = \frac{2t}{3} \) so that \(du = \frac{2}{3} \, dt \) \(\Rightarrow \) \(dt = \frac{3}{2} \, du \). Moreover, \(t = \frac{-3\sqrt{3}}{2} \) \(\Rightarrow \) \(u = -\sqrt{3} \); \(t = \frac{3}{2} \) \(\Rightarrow \) \(u = 1 \). Then

\[
\frac{1}{9} \int_{-3\sqrt{3}/2}^{3/2} \frac{1}{\left(\frac{2u}{3} \right)^2 + 1} \, du = \frac{1}{9} \int_{-\sqrt{3}}^{1} \frac{1}{u^2 + 1} \left(\frac{3}{2} \right) \, du = \frac{1}{6} \tan^{-1} u \bigg|_{-\sqrt{3}}^{1}
\]

\[
= \frac{1}{6} \left[\tan^{-1} 1 - \tan^{-1} \left(-\sqrt{3} \right) \right] = \frac{1}{6} \left[\frac{\pi}{4} - \left(-\frac{\pi}{3} \right) \right] = \frac{7\pi}{72}
\]

5. [10 pts] A culture initially contains 1000 bacteria and the number of bacteria increases at a rate proportional to the number present. After a third of an hour there are 3000 bacteria in the culture. When will the culture contain 81000 bacteria? Simplify your final answer so that it does not contain any logarithms.

SOLUTION:

Since the culture grows at a rate proportional to the number present, letting \(P(t) \) be the number of bacteria present at time \(t \) we have

\[
\frac{dP}{dt} = kP \quad \Rightarrow \quad P(t) = P(0)e^{kt}
\]

We are given that \(P(0) = 1000 \) and that \(P(1/3) = 3000 \) (if using \(t \) in minutes this is \(P(20) = 3000 \)). This allows us to find \(k \) as (left column for \(t \) in hours, right column for \(t \) in minutes)

Thus \(P(t) = 1000e^{kt} \) (or \(P(t) = 1000e^{(\ln 3^{1/20})t} \) if \(t \) is in minutes). We now need to find when the number of bacteria reaches 81000. This occurs when (left column for \(t \) in hours, right column for \(t \) in minutes)

\[
\begin{align*}
81000 &= 1000e^{(\ln 27)t} \\
81 &= e^{(\ln 27)t} \\
\ln 81 &= (\ln 27)t \\
\frac{\ln 81}{\ln 27} &= \frac{4\ln 3}{3} \\
t &= \frac{4}{3} \text{ hours}
\end{align*}
\]

\[
\begin{align*}
81000 &= 1000e^{(\ln 3^{1/20})t} \\
81 &= e^{(\ln 3^{1/20})t} \\
\ln 81 &= (\ln 3^{1/20})t \\
\frac{\ln 81}{\ln 3} &= \frac{20\ln 3}{\ln 3} = \frac{80\ln 3}{\ln 3} = 80 \text{ minutes}
\end{align*}
\]

6. [10 pts] In your bluebook, write \textbf{TRUE} if the statement is true and write \textbf{FALSE} if the statement is false. Do not abbreviate with T or F. No justification required and no partial credit given.

(a) \(\ln \sqrt{x+y} = \frac{1}{2} (\ln x + \ln y) \)

(b) \(\frac{d}{dx} \left(\frac{1}{2} \right)^{2x} = - \left(\frac{1}{2} \right)^{2x} \ln 4 \)

(c) \(\frac{d}{dx} \ln \ln x = 1 \)

(d) \(\int \pi^x \, dx = \pi^{x+1} + C \)

(e) \(\frac{d}{dx} \log x = \frac{1}{x \ln 10} \)

SOLUTION:

(a) \textbf{FALSE} \(\ln \sqrt{x+y} = \ln(x+y)^{1/2} = \frac{1}{2} \ln(x+y) \) but \(\ln(x+y) \neq \ln x + \ln y \)

(b) \textbf{TRUE} \(\frac{d}{dx} \left(\frac{1}{2} \right)^{2x} = \left(\frac{1}{2} \right)^{2x} \left(\ln 1 \right) \frac{d}{dx} (2x) = \left(\frac{1}{2} \right)^{2x} (2 \ln 2^{-1}) (2) = \left(\frac{1}{2} \right)^{2x} (-2 \ln 2) = - \left(\frac{1}{2} \right)^{2x} \ln 4 \)

(c) \textbf{TRUE} \(3^{\ln x} = x \) and \(\frac{d}{dx} x = 1 \)

(d) \textbf{FALSE} \(\int \pi^x \, dx = \frac{\pi^x}{\ln \pi} + C \)

(e) \textbf{TRUE} \(\log x = \frac{\ln x}{\ln 10} \Rightarrow \frac{d}{dx} \log x = \frac{d}{dx} \left(\frac{\ln x}{\ln 10} \right) = \frac{1}{\ln 10} \frac{d}{dx} \ln x = \frac{1}{x \ln 10} \)