INSTRUCTIONS: Books, notes, and electronic devices are not permitted. This exam is worth 100 points. Box your final answers. Write neatly, top to bottom, left to right, one problem per page. A correct answer with incorrect or no supporting work may receive no credit. If you need to find a derivative then you must find it via definition. SHOW ALL WORK

1. (20 points) Evaluate the following limits:

(a) \(\lim_{\theta \to 0} \left[\frac{\theta \cos^2(\theta) + 10\theta^2 - \theta}{\theta^2} \right] \)

(b) \(\lim_{x \to 2} \left[\frac{\sqrt{4x + 1} - 3}{x - 2} \right] \)

(c) \(\lim_{t \to 0} \left[\frac{\tan(6t)}{\sin(2t)} \right] \)

(d) \(\lim_{x \to 2^-} \left[\frac{x^2 + x - 6}{|x - 2|} \right] \)

Solution:

(a) \(\lim_{\theta \to 0} \left[\frac{\cos^2 \theta - 1 + 10\theta}{\theta} \right] = \lim_{\theta \to 0} \left[-1 \cdot \frac{\sin^2 \theta}{\theta} + 10 \right] = \lim_{\theta \to 0} \left[-1 \cdot \frac{\sin \theta}{\theta} \cdot \sin(\theta) + 10 \right] = 10 \)

(b) \(\lim_{x \to 2} \left[\frac{\sqrt{4x + 1} - 3 \cdot \sqrt{4x + 1} + 3}{x - 2} \right] = \lim_{x \to 2} \left[\frac{4x + 1 - 9}{(x - 2) \sqrt{4x + 1} + 3} \right] = \lim_{x \to 2} \left[\frac{4(x - 2)}{(x - 2) \sqrt{4x + 1} + 3} \right] = \frac{2}{3} \)

(c) \(\lim_{t \to 0} \left[\frac{\sin(6t)}{\cos(6t) \sin(2t)} \right] = \lim_{t \to 0} \left[\frac{\sin(2t) \cos(4t) + \sin(4t) \cos(2t)}{\cos(6t) \sin(2t)} \right] = \lim_{t \to 0} \left[\frac{\cos(4t) + 2 \sin(2t) \cos^2(2t)}{\cos(6t) \sin(2t)} \right] = \frac{1}{1} + 2 \cdot \frac{1^2}{1} = 3 \)

(d) note: \(\frac{x^2 + x - 6}{|x - 2|} = \begin{cases}
\frac{(x - 2)(x + 3)}{x - 2} = (x + 3) & , x > 2 \\
\frac{(x - 2)(x + 3)}{-(x - 2)} = -(x + 3) & , x < 2
\end{cases} \)

Therefore, \(\lim_{x \to 2^-} = [-x - 3] = -5 \)
2. (8 points) Consider the function:

\[f(x) = \begin{cases}
-x^2 + 6x - 8 & , x > 3 \\
 x - 2 & , x < 3 \\
 1 & , x = 3
\end{cases} \]

Show that \(f(x) \) is either continuous on the real numbers, or name any points of discontinuity.

Solution:

\(f(x) \) is described in 3 pieces, each of which is a continuous polynomial. Therefore, the only possible point of discontinuity might be at \(x = 3 \).

To demonstrate continuity at \(x = 3 \), we must show \(\lim_{x \to 3} [f(x)] = f(3) \).

i.e. We need \(\lim_{x \to 3^-} [f(x)] = \lim_{x \to 3^+} [f(x)] = f(3) \).

\[\lim_{x \to 3^-} [x - 2] = 1 \text{ and } \lim_{x \to 3^+} [-x^2 + 6x - 8] = 1 \] and \(f(3) = 1 \).

Therefore, \(f(x) \) is continuous on \((-\infty, \infty)\).
3. (15 points) Consider the equation: \(y = \sqrt{x} \).

(a) Find the average rate of change of \(y \) between \(x = 1 \) and \(x = 4 \).

(b) Find the instantaneous rate of change of \(y \) at \(x = 1 \).

(c) Find the equation of the tangent line to the curve \(y \) at \(x = 1 \).

Solution:

(a) \[
\frac{f(4) - f(1)}{4 - 1} = \frac{\sqrt{4} - \sqrt{1}}{4 - 1} = \frac{2 - 1}{4 - 1} = \frac{1}{3}
\]

(b) \[
\lim_{h \to 0} \left[\frac{\sqrt{1 + h} - 1}{h} \cdot \frac{\sqrt{1 + h} + 1}{\sqrt{1 + h} + 1} \right] = \lim_{h \to 0} \left[\frac{1 + h - 1}{h(\sqrt{1 + h} + 1)} \right] = \frac{1}{2}
\]

(c) Using point \((1, 1)\) and \(m = \frac{1}{2} \), we get \(y - 1 = \frac{1}{2} (x - 1) \), or \(y = \frac{1}{2} x + \frac{1}{2} \), or \(x - 2y = -1 \).
4. (12 points) The following may not be related:

(a) \(f(x) = \frac{2}{x} \), then \(f'(1) = ? \)
(b) \(\lim_{x \to \infty} \left[\frac{x(2x^2 - 8)}{x^3 - 2x^2 + 100x - 200} \right] = ? \)

Solution:

(a) \(f'(x) = \lim_{h \to 0} \left[\frac{\frac{2}{1+h} - 2}{h} \right] = \lim_{h \to 0} \left[\frac{2 - 2(1 + h)}{h(1 + h)} \right] = \lim_{h \to 0} \left[\frac{2 - 2 - 2h}{h(1 + h)} \right] = \lim_{h \to 0} \left[\frac{-2}{1 + h} \right] = -2 \)

(b) \(\lim_{x \to \infty} \left[\frac{2x(x + 2)(x - 2)}{(x^2 + 100)(x - 2)} \right] = \lim_{x \to \infty} \left[\frac{2x^2 + 4x}{x^2 + 100} \right] = \lim_{x \to \infty} \left[\frac{2 + \frac{4}{x}}{1 + \frac{100}{x^2}} \right] = 2 \)
5. (8 points) Find \(\lim_{x \to 0} \left[\frac{1 - \cos(x)}{x^2} \right] \), given \(\frac{x^2}{24} < \frac{2 - 2 \cos(x) - x^2}{2x^2} \) and \(\frac{x^2}{2} > |1 - \cos(x)| \).

(Full credit is awarded for using the given information)

Solution:

\[
1 - \cos(x) < \frac{x^2}{2} \implies \frac{1 - \cos(x)}{x^2} < \frac{1}{2}. \quad \text{Furthermore,}
\]

\[
\frac{x^2}{24} < \frac{2 - 2 \cos(x) - x^2}{2x^2} \implies \frac{x^2}{24} < \frac{2(1 - \cos(x))}{2x^2} - \frac{1}{2} \implies \frac{1}{2} \frac{x^2}{24} < \frac{1 - \cos(x)}{x^2}
\]

Together these 2 inequalities imply \(\frac{1}{2} \frac{x^2}{24} < \frac{1 - \cos(x)}{x^2} < \frac{1}{2} \)

\[
\lim_{x \to 0} \left[\frac{1 - x^2}{24} \right] = \frac{1}{2} = \lim_{x \to 0} \left[\frac{1}{2} \right]
\]

Therefore, \(\lim_{x \to 0} \left[\frac{1 - \cos(x)}{x^2} \right] = \frac{1}{2} \) by the squeeze theorem.
6. (12 points)
(a) Sketch a function with all six of the characteristics listed below.
(b) Create a function with all six of the characteristics listed below.

(i) \(f(1) = 0 \)
(ii) \(\lim_{x \to 1} [f(x)] = -1 \)
(iii) \(\lim_{x \to 3^+} [f(x)] = \infty \)

(iv) \(\lim_{x \to 3^-} [f(x)] = -\infty \)
(v) \(\lim_{x \to -\infty} [f(x)] = 2 \)
(vi) \(\lim_{x \to \infty} [f(x)] = 2 \)

Solution:

(a)

(b) \[
f(x) = \frac{(x - 1)2x}{(x - 1)(x - 3)} = \frac{2x^2 - 2x}{x^2 - 4x + 3} = \frac{2x}{x - 3}
\]
MORE ON THE BACK
7. (15 points) Explain why the following statements are true or false. Consider a number of ideas in your explanation: graphs, continuity, increasing functions, the IVT etc. Grading on this problem is dependent on neatness, thoroughness and succinctness of explanation.

(a) The following statement is true, explain why:
\[f(x) = x^2 - 4x + 7 \] equals \(\pi \) somewhere between \(x = 0 \) and \(x = 6 \).

(b) The following statement is false, explain why:
The I.V.T. can be used to show \(f(x) = \frac{x^3 + 8x + 10}{x - 1} \) equals 10 somewhere between \(x = 0 \) and \(x = 2 \).

(c) The following statement is true, explain why:
\[f(x) = \frac{8x + 10}{4x^2 + x - 5} \] equals 3 somewhere between \(x = 0 \) and \(x = 2 \).

Solution:
(a) This is an upward opening parabola with vertex \((2, 3)\), and quadratic equations (polynomials) are continuous. Thus all values greater than 3, \(\pi \) included, must be realized. Furthermore, \([0, 2]\) is part of the set of values inside \([0, 6]\). \(f(2) = 3 \), and \(f(0) = 7 \). Since \(3 < \pi < 7 \), by the IVT we will have \(f(x) = \pi \) for some value between 0 and 2 (and therefore between 0 and 6.)

(b) The IVT cannot be used to determine a root exists between \(x = 0 \) and \(x = 2 \) because \(f(x) \) is not continuous on this interval. There is a discontinuity at \(x = 1 \) and 1 is inside the interval \([0, 2]\). Furthermore, \(f(x) \) is positive only for values \((1, 2]\), inside the interval of concern, and for these values \(f(x) \) is decreasing asymptotically from \(-\infty\) to \(y = 34 \); hence never reaching 10.

(c) \[f(x) = \frac{2(4x + 5)}{(4x + 5)(x - 1)} = \frac{2}{x - 1} \] This function has a vertical asymptote at \(x = 1 \). \(\lim_{x \to 1^+} f(x) = \infty \) and \(\lim_{x \to \infty} f(x) = 0 \) means that \(f(x) \) will take on all values on \((0, \infty)\), 3 included. Furthermore, \(f\left(\frac{3}{2}\right) = 4 \) and \(f(2) = 2 \). Therefore, \(f(x) \) (being continuous on its domain), by the IVT \(f(x) \) takes on all values between \(y = 2 \) and \(y = 4 \), 3 included.
8. (10 points) Given the following graphs of $f(x)$ and $g(x)$, sketch the graphs of $f'(x)$ and $g'(x)$.
No explanation required. You can use the axis system provided as scratch paper, but you must reproduce a sketch of your graphs in your blue book for any credit.

Solution: