
Applied Analysis Preliminary Exam (Hints/solutions)
1:00 PM – 4:00 PM, August 21, 2023

Instructions You have three hours to complete this exam. Work all five problems; there are no optional
problems. Each problem is worth 20 points. Please start each problem on a new page. Please clearly indicate
any work that you do not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST
prove your conclusions or show a counter-example for all problems unless otherwise noted. In your proofs,
you may use any major theorem or homework problem on the syllabus or discussed in class or in the Hunter
& Nachtergaele book, unless you are directly proving such a result (when in doubt, ask the proctor). If you
cannot finish part of a question, you may wish to move on to the next part; problems are graded with partial
credit. Write your student number on your exam, not your name.

Problem 1 (20 points)

(a) Prove that f(x) = ∥x∥ is continuous when ∥ · ∥ is a norm.
(b) Two norms ∥ · ∥a and ∥ · ∥b are said to be equivalent when there are two positive constants c and C

such that c∥x∥a ≤ ∥x∥b ≤ C∥x∥a for all x. Prove that all norms on Rn are equivalent. What part of
this proof does not work in infinite dimensions? Hint: Use part (a).

Solution:

(a) Let ϵ be given and let δ = ϵ. Assume ∥x − y∥ < δ. Then by the reverse triangle inequality∣∣∥x∥ − ∥y∥
∣∣ ≤ ∥x − y∥ < δ = ϵ.

(b) If x = 0 then the inequality holds trivially for any pair of norms and any pair of constants, so assume
that x ̸= 0. The statement of equivalence of the two norms is equivalent to the statement that

c ≤ ∥u∥b ≤ C

for every vector u = x/∥x∥a that is a unit vector with respect to the a-norm. From the Heine-Borel
theorem we know that the surface of the unit sphere in Rn is compact because it is closed and bounded.
We also know that the norm ∥ · ∥b is a continuous function. It therefore achieves a maximum and a
minimum on a compact set (the generalization of the extreme value theorem), and we can set

c = min
∥u∥a=1

∥u∥b, C = max
∥u∥a=1

∥u∥b.

To show that these are positive requires only noting that c = 0 implies that there is some vector v such
that ∥v∥b = 0 and ∥v∥a = 1. This is not possible because ∥v∥b = 0 ⇔ v = 0, but ∥0∥a = 0 ̸= 1.
The unit sphere is not compact in infinite dimensions. We can replace max and min by sup and inf,
but c = inf∥u∥a=1 ∥u∥b may be zero, and C = sup∥u∥a=1 ∥u∥b may be infinite.

Comments: This turned out to be a hard question! You could try to prove this with the open mapping
theorem, which says that if T : X → Y is a bijective bounded linear map between Banach spaces, then
T −1 is bounded too. Here, we let X = Y =Rn be the same space but with the ∥ · ∥a and ∥ · ∥b norms,
respectively, and T be the identity. Then if you show T is bounded (which it must be, since it’s linear
on finite dimensional spaces), then we have the constant C < ∞, and the open mapping theorem gives
the constant c > 0. However, this proof isn’t great since it relies on the fact that finite dimensional
linear operators are bounded, and that is really kind of the same statement as this problem, so it’s
circular.
Other common issues: because this is true in a normed space and not just a Hilbert space, the proof
shouldn’t use any kind of orthogonality (e.g., note that Parseval/Bessel’s inequalities only work for the
induced Hilbers space norm, not any norm).
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Problem 2 (20 points) Consider the subset F ⊂ C[0, 1] consisting of functions of the form

f(x) = log(a − x)

for some a ∈ [3, b] for some b ∈ (3, ∞). Prove that F is a compact subset of C[0, 1].
Solution: We need to prove that the set is closed, bounded, and equicontinuous (and thus invoke the
Arzela-Ascoli theorem).

• To show that it is closed, we will show that any limit point of a sequence within the set is also in the
set. Any sequence of functions fn ∈ F can be parameterized via

fn(x) = log(an − x).

If fn is convergent with respect to the sup norm, then fn(x) is also convergent for any x ∈ [0, 1]. Since
ex is a continuous function, we have that

exp{f∞(x)} = exp{ lim
n→∞

fn(x)} = lim
n→∞

exp{fn(x)} = lim
n→∞

(an − x),

which implies that limn→∞ an exists and is equal to x+ exp{f∞(x)}. Since an ∈ [3, b] and {an} is a
convergent sequence, we infer that the limit a∞ is also in [3, b] since the interval [3, b] is closed. Thus,
for any x ∈ [0, 1]

lim
n→∞

fn(x) = log(a∞ − x).

Since a∞ ∈ [3, b] we have that every convergent sequence in F converges to a function that is also in
F , implying that F is closed.

An alternative proof: use the fact that (an) ⊂ [3, b] so it must have a convergent subsequence, and
use the sequential continuity of log. (This is very similar to Exercise 1.27: if (xn) is a sequence in a
compact metric space and every convergent subsequence has the same limit x, then xn → x).

• To show boundedness: ∥f∥∞ = maxx∈[0,1] | log(a − x)| = maxx∈[0,1] log(a − x) = log(a) ≤ log(b).
• To show equicontinuity we will show that all f ∈ F share the same Lipschitz constant. The derivative

of an f in F is
f ′(x) = 1

x − a
.

For x ∈ [0, 1] and a ∈ [3, b] the absolute value is bounded above

|f ′(x)| ≤ 1
2 .

All functions in F are Lipschitz continuous with constant 1/2, so they are equicontinuous.

Problem 3 (20 points) Let A ∈ B(H) be a self-adjoint compact linear operator on a Hilbert space H.
Prove that ran(A) is closed if and only if A is finite rank.
Solution: We’ll start with the easy direction: let A be finite rank. Then ran(A) is a subspace since A
is linear, and is finite dimensional by assumption, hence must be closed (cf. Corollary 5.34 in Hunter &
Nachtergaele). Note: we didn’t need compactness for this direction.

Now the other direction: we’ll suppose that A is not finite rank, and show ran(A) cannot be closed. Using
the implication of Thm. 8.17 in Hunter & Nachtergaele, we have the general result that

H = ran(A) ⊕ ker(A∗)

and since A is self-adjoint, in our case we have H = ran(A) ⊕ ker(A). Define H0 = ran(A) which is a closed
subspace of a Hilbert space and hence a Hilbert space itself, and define A0 : H0 → H the restriction of A to
H0, so that A0 is one-to-one. Clearly ran(A) = ran(A0) and it also follows that A0 is compact.
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For the sake of contradiction, let us assume ran(A) is closed. Then the open mapping theorem (or Prop.
5.30 in Hunter & Nachtergaele) implies that A−1

0 : ran(A) → H0 is bounded.
However, this leads to a contradiction. By the spectral theorem,

A0 =
∞∑

n=1
λnPn

where λn → 0 but infinitely many λn ̸= 0 (else it would be finite-rank). Then consider a sequence en ∈
ran(Pn) of unit-norm, and A−1

0 en = λ−1
n en which implies A−1

0 is unbounded.

Or, instead of the spectral theorem, you can do this. Let B be the unit ball in H which is compact iff H is
finite dimensional. Since we’re assuming A isn’t finite rank, we’ve presupposed H is infinite dimensional. Now
we’ll prove that in fact B is compact, getting our contradiction. Take any sequence (xn) ⊂ B, then since this
is bounded and by compactness of A0, we have that (A0xn) must be pre-compact, i.e., there is a convergent
subsequence (A0xnk

). But we showed that A−1
0 is bounded, hence (sequentially) continuous, so (A−1

0 xnk
) =

(xnk
) has a convergent subsequence, hence B is (sequentially) compact, which is the contradiction.

Yet another variation. Consider A0A−1 : ran(A) → ran(A), which is a compact operator (A0 being compact
and A−1 being bounded by the open mapping theorem which applies if we’re careful about the restriction to
avoid the kernel of A, and since ran(A) is closed). Yet A0A−1 is the identity, and this is a compact operator
iff the space is finite dimensional.

Problem 4 (20 points) Let Ek be measurable sets and define

lim sup Ek =
∞⋂

j=1

 ∞⋃
k=j

Ek

 , lim inf Ek =
∞⋃

j=1

 ∞⋂
k=j

Ek

 .

(a) Fatou’s lemma for functions says that if (fn) is a sequence of non-negative measurable functions,
then

∫
lim inf fn ≤ lim inf

∫
fn. Prove the following variant of Fatou’s lemma for measurable sets:

µ(lim inf Ek) ≤ lim inf µ(Ek).
(b) Prove the First Borel-Cantelli lemma:

∑
µ(Ek) < ∞ implies µ(lim sup Ek) = 0.

Solution: These all follow from the continuity of measure, namely, that if (Ai) is an increasing sequence of
measurable sets, meaning that Ai ⊂ Ai+1, then

µ

( ∞⋃
i=1

Ai

)
= lim

i→∞
µ(Ai).

This is exercise 12.3 in the book, and it is OK to state it without proof, but you can also prove it directly:
due to the nesting, and defining A0 = ∅ for notational convenience, we calculate:

µ

( ∞⋃
i=1

Ai

)
= µ

( ∞⋃
i=1

(Ai \ Ai−1)
)

=
∞∑

i=1
µ (Ai \ Ai−1) by countable additivity, since disjoint

= lim
n→∞

n∑
i=1

µ (Ai \ Ai−1)

= lim
n→∞

µ

(
n⋃

i=1
Ai \ Ai−1

)
= lim

n→∞
µ (An) .
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We also have this immediate corollary: If (Ai) is a decreasing sequence of measurable sets, meaning that
Ai ⊃ Ai+1, and µ(Ak) < ∞ for some k, then

µ

( ∞⋂
i=1

Ai

)
= lim

i→∞
µ(Ai).

A proof of this fact: wlog let A1 have finite measure. Recall De Morgan’s laws: ∩Ai = (∪iA
c
i )c where c

represents complement with respect to a superset (such as A1). Then

µ (∩Ai) = µ(A1) − µ (∪iA1 \ Ai)

and the sequence of sets (A1 \ Ai) is an increasing nested sequence, so we can apply the original continuity
of measure result.
Now solutions in detail:

(a) We’ll give two different styles of proof. The first proof uses the continuity of measure result used above.
Let Fj = ∩∞

k=jEk so that Fj ⊂ Fj+1, i.e., the sets are nested. Also, fixing j, note that for all k′ ≥ j
then ∩k≥jEk ⊂ Ek′ hence µ (∩k≥jEk) ≤ µ (Ek′), and if that is true for all k′ ≥ j then it’s also true for
the infimum over all k′ ≥ j. Putting this altogether,

lim inf µ(Ek) := lim
j→∞

(
inf

k′≥j
µ (Ek′)

)
≥ lim

j→∞
(µ (∩k≥jEk))

= lim
j→∞

(µ(Fj))

= µ(∪jFj)
= µ

(
∪j ∩∞

k=j Ek =: lim inf Ek

)
.

An alternative style of proof is to deduce this from Fatou’s lemma for functions. Let IA denote the
indicator function of a measurable set A, i.e.,

IA(x) =
{

1 x ∈ A

0 x ̸∈ A
.

Then let fk = IEk
and it follows that

∫
fkdµ = µ(Ek). Then with a little bit of work, you can show

that
lim inf fk = Ilim inf Ek

and from there, Fatou’s lemma for functions gives the result.
(b) We’ll use the corollary of the continuity of measure (i.e., the result for decreasing sets) and define

Fj = ∪k≥jEk which is clearly decreasing, Fj+1 ⊂ Fj . Furthermore,

µ(F1) = µ (∪∞
k=1Ek) ≤

∞∑
k=1

µ (Ek)

which is finite by assumption, where we used countable sub-additivity (for non-disjoint sets) which
follows pretty directly from the axioms for a measure (namely, non-negativity and countable additivity
for disjoint sets).
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Hence we’re in position to apply the continuity of measure corollary. Calculate:

µ (lim sup Ek) = µ

(
lim

j
Fj

)
= lim

j
µ(Fj) by continuity of measure corollary

= lim
j

µ (∪k≥jEk)

≤ lim
j

∑
k≥j

µ (Ek) by countable sub-additivity again

≤ 0

as desired, where the last line follows because, again using that µ (Ek) < ∞, it follows the limit of the
tails of the sum must converge to zero (i.e., the partial sums must be Cauchy).

Problem 5 (20 points)

(a) Solve the following integro-differential equation by giving an expression for φ in terms of f ∈ L1(T)

−φ′′(x) + 1
π

∫
T

cos2
(

x − y

2

)
φ(y)dy = f(x).

(b) Prove that if f ∈ L2(T) then φ ∈ C1(T).

Solution:

(a) Recognize
1
π

∫
T

cos2
(

x − y

2

)
φ(y)dy = (h ∗ φ)(x)

where
h(x) = 1

π
cos2

(x

2

)
.

Taking the L2 inner product of the integro-differential equation with einx/
√

2π (i.e. integrate against
e−inx/

√
2π) yields

n2φ̂n +
√

2πĥnφ̂n = f̂n.

Solving for φ̂n yields

φ̂n = f̂n

n2 +
√

2πĥn

.

Our final expression for φ is

φ(x) = 1√
2π

∑
n

einx f̂n

n2 +
√

2πĥn

.

In order for this to be well-defined, we need to make sure that
√

2πĥn ̸= −n2 for any n. The Fourier
coefficients of h are found from the power reduction formula

cos2
(x

2

)
= 1 − cos(x)

2 .

So ĥ0 =
√

π/2, ĥ±1 =
√

π/8 and ĥn = 0 for n ≥ 2.
(b) If f ∈ L2 then φ ∈ H2 because∑

n

n4|φ̂n|2 =
∑

n

n4|f̂n|2

(n2 +
√

2πĥn)2
≤
∑

n

|f̂n|2 = ∥f∥2
2

using ĥn ≥ 0.
By the Sobolev embedding theorem, φ ∈ Cℓ(T) where ℓ is the largest integer strictly less than

2 − 1/2, i.e. φ ∈ C1(T).

5


