Applied Analysis Preliminary Exam (Hints/solutions)
9:00 AM - 12:00 PM, August 17, 2021

Instructions You have three hours to complete this exam. Work all five problems; there are no optional
problems. Each problem is worth 20 points. Please start each problem on a new page. Please clearly indicate
any work that you do not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST
prove your conclusions or show a counter-example for all problems unless otherwise noted. In your proofs,
you may use any major theorem on the syllabus or discussed in class, unless you are directly proving such a
theorem (when in doubt, ask the proctor). If you cannot finish part of a question, you may wish to move on
to the next part; problems are graded with partial credit. Write your student number on your exam,
not your name.

Problem 1 (20 points) The following two problems are unrelated.

(a) Let r € R? and E(r) = T L be a vector field where r = |[r||2, and ¢ and €, are constants; you may

recognize this as the electric field due to a charge ¢ at the origin. By using the formula for the surface

area of a sphere, observe that
# E-ndS=2L
s €0

if S is a sphere of radius R > 0 (no work necessary on your part). Show that in fact this equation holds
for any bounded, smooth closed surface S that encloses the origin (this is a simple version of Gauss’
law). Hint: is E divergence-free in some regions?

Solution: Let S be our closed surface, and Sg be the sphere of radius R, and let V' be the volume
enclosed between S and Sgi. To be very careful, let’s ensure that S and Sg do not intersect; since S is
bounded, simply choose R sufficiently large so that it completely encloses S.

Also note that (V - E)(r) =0 for all r # 0 since divergence in spherical coordinates can be written

1 0 1 0Fy

rsin ¢ %(Sin 0Es) + rsin ¢ 00

where (E,, E4, Eg) represent E in spherical coordinates. In our case, E, r~2 and Ey = FEg =0,
hence V - E = 0. You can also calculate the divergence directly in Cartesian coordinates if you wish:

. 3 _3,.2,. . .
V-E = aab;z + E);;y aab;z with E, = x/r® and % = % when r # 0, and similarly for E, and

E., so when the partials are added together, they exactly cancel and give V - E = 0.

Since V does not contain the origin,

///‘/V-EdV:///VO:0

and on the other hand, by the divergence theorem,

///V-EdV:# E-ndS
\4 oV
:# E-ﬁdS—#E-ﬁdS
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:gf#E-ﬁdS
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hence we conclude ¢ E - 1dS = %
(b)

i. For every n € Z, show there is a unique solution a € (—/2, /2] solving the equation cos(c) = n? o
In the interest of time, you may give details for n = 1 and just a quick proof sketch for all other n.
Solution: For n = 0, the unique solution is @ = 7/2 by inspection. Note that n? does not

have a well-defined real value if n < 0, so the question should have read cos(a) = |n|?a.



For n = +1, we are solving the fixed point equation F(a) = a for F(a) = +1cos(a). We'll
show n = +1 in detail but n = —1 is very similar. Note: for n = 1, this is known as the Dottie
number, and is a transcendental number near 0.739085.

Note F(«) > 0 for all o € (—7/2,7/2], hence we can exclude o < 0 as a solution; similarly,
we can exclude o > 1, and thus focus on « € [0,1]. Note F(0) = 1 and F(1) ~ 0.54 and F’ is
monotonically decreasing in [0, 7/2], so F' maps [0, 1] into [0, 0.54], and F' is continuous, so therefore
we can apply the contraction mapping theorem (aka Banach fixed point theorem) if we
can show F' is a contraction. This is straightforward since |F'(«)| = |sin(a)| < sin(1) < 1 for
a € [0,1] (note that just showing |F'(«)| < 1 is not quite the same thing, as we need a uniform
bound away from 1 to be a contraction). Note: there are other numbers you can use for this, e.g.
observe cos([0,1]) C cos([0,7/3]) = [0, 2] and sin([0, 1]) C sin([0, 7/6]) = [0, 3]).

For |n| > 2, the argument is similar, applied to the fixed-point equation F(a) = a with F(a) =
i% cos(ar), which is continuous, and maps [0, 1] into [0, 1] (or [—1,0] into [—1,0] if n < 0), and has
n
;%1 sin(«) as its derivative so is clearly a contraction.

" Comment: using the intermediate value theorem for continuous functions only guarantees
existence, not uniqueness, so that was not a valid solution to this question, unless you added an
argument about strict monotonicity of the root-finding problem.

ii. Let oy, be the unique solution in (—m/2,7/2] to the equation cos(a) = n?a. Define the function

flz) = Z ay, cos(ne).

ne”z

Prove f is a continuous function. Hint: what do you know about growth/decay of o, ?

Solution: The equation is the Fourier series representation of f, with Fourier coefficients
|ful < n™% (they are not exactly n™3 since this is the cosine series rather than with e™"®, and since
we don’t have an explicit expression for ;). All we need from «, is that it is bounded by n*%; the
fact that we don’t have an explicit expression for it means that you likely cannot find a closed-form
expression for f and use that to determine continuity.

Then observe that 3 [n|?*|f,[2 < 32, [n|?*73 is finite if 2k — 3 < —1, i.e., if K < 1. Thus f
is in the k' Sobolev space on the torus, H*(T), for k < 1. In particular, this is true for k = 3.
Thus by the Sobolev embedding theorem, since k& > %, it follows f is continuous. Careful: it
is not necessarily true that f € H(T).

Comment: most attempts to prove continuity directly don’t work. For example, if you derive
|f(z) = f(y)] <> ,cz @n-n-|z—y| (which follows from sequential continuity of the absolute value
function, the triangle inequality, and the fact that cos(nx) is Lipschitz continuous with constant n),
the fact that oy, < n~2 isn’t enough to make this a convergent series, since S>n~2 > Y n~! = co.
You can look at the partial sums and show uniform convergence (which would imply f is continuous,
since the uniform limit of continuous functions is continuous), but if you do this, you're essentially
reproving the Sobolev embedding theorem (see Lemma 7.8 in Hungter & Nachtergaele).

Problem 2 (20 points) Let F' = C([0,1]) be the Banach space of continuous real-valued functions on [0, 1]
equipped with the sup-norm, || - ||oo, and let G = C*(]0,1]) be the Banach space of real-valued continuously
differentiable functions on [0, 1] equipped with the norm

1£ller = 1flloo + 1 lloo- (1)
(a) Prove that ||f||c: defined by (1) is a norm on G.

(b) We note that G C F, and we consider the canonical injection
Z: (G- ller) — (B[] - llso) (2)
f—7 3)
Prove that Z is a compact operator. Hint: you might consider using the Arzela-Ascoli theorem.

Solution:


https://en.wikipedia.org/wiki/Dottie_number
https://en.wikipedia.org/wiki/Dottie_number

(a) We have to check that || - ||c1 satisfies the three axioms that define a norm.

o If f =0 then clearly || f|cc = 0, whence it follows that f = 0.
o We now prove the triangular inequality.

I
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e The third axiom is obvious.
Hence || - || is a norm.

(b) We wish to prove that Z is a compact operator. Let K be the unit ball of G (for the norm || - ||c1),
we need to prove that Z(K) is precompact (relatively compact) in F'. To do this we use Ascoli-Arzela
theorem. The subset Z(K) is precompact in F' if and only if it is bounded and equicontinuous.

o Z(K) is bounded. Clearly, if f € K, we have ||f||c: <1 by definition of K, and thus

IZ(NMoo = 1flloe < Ifller < 1. (7)

We conclude that Z (K) is bounded in F.
e T(K) is equicontinuous. Let f € K, by the same argument as above we have ||f'||.c < 1 by
definition of || - [|c1. Therefore,

Yo,y €[0,1], |f(z) — f(y)| < Zl[tpl]lf’(Z)llx—yl <z —yl (8)

and thus Z (K) is equicontinuous.

We conclude that Z (K) is precompact, and therefore Z is a compact operator.

Problem 3 (20 points) Let F' = C([0, 1]) be the Banach space of continuous real-valued functions on [0, 1]
equipped with the sup-norm, || - [|o. Let u € F, and define the function Tu on [0, 1] by

1 [® .
Tu(z) = ;/0 u(t)dt if x € (0,1], (9)
u(0) if x =0.

(a) Prove that Tu € F, and that
YueF, ||Tul <u. (10)

Conclude that T belongs to B(F).

(b) Prove that the point spectrum (eigenvalues) of T is equal to (0,1]. Determine the corresponding
eigenfunctions.

(c) Prove that |||z = 1.
Solution:

(a) The continuity of Tu at all > 0 is clear (it’s the product of continuous functions). Now we focus on
proving it is continuous at 0. We note that if > 0

Tu(z) = - /0 ")t = /O w(at)dt, (1)

xT

whence it follows that

1
lim Tu(z) = / u(0)dt = u(0). (12)
x—0 0
for the following reason: noting |u| is bounded by g(z) = ||ullec < o0, define u, = u(xt), then for all

x <1, (Vt €[0,1]) Juz(t)| < g(t) and g is integrable over [0, 1], hence we can interchange the limit and
the integral using Lebesgue’s Dominated Convergence Theorem.



(¢)

Alternative 1: for any = > 0, using u(0) = %foz u(0) dt,

(0@ w0 = |3 [ ate) = w0y < 3 [ ju(t) = o)l < swplute) ~ ).

T

which can be made arbitrarily small by choosing 2 arbitrarily small (due to the continuity of w).

Alternative 2: note that limg % = fo t)dt is of the form 0/0, i.e., lim,_q Z:Ex; with f(z) =

fo t)dt and g(x) = z. As f and g are differentiable, and as the limit lim,_,q % = limg 50 —— =

u(0) ex1sts (via the Fundamental Theorem of Calculus), we can use L’Hopital’s rule to conclude
lim,_,o(Tu)(x) = u(0).
To show boundedness, clearly |Tu(0)| < ||u||o, and if z # 0,

1
[Tu(z)] S/O [ufloodt = [[tloo, (13)

and thus
[Tulloo < llufloo- (14)

We conclude that T is a bounded, and (since it’s clearly linear) therefore continuous, operator from F
to itself.

Let A be an eigenvalue. First, we can show that A # 0 because if u is the corresponding eigenfunction
and T'(u) = 0 then u(0) = 0 and [ u(t)dt = 0 for all z € [0,1], so defining F(z) = [; u(t) dt, we have
F(x) =0, hence F =0, hence F' =0, but by the fundamental theorem of calculus Wthh applies
since u is continuous, we have F’ = u (as continuous derivatives are unique), hence u = 0, meaning
that by definition A = 0 is not an eigenvalue. Alternatively, to prove u = 0 if A = 0, note f; u(t)dt =0
for all x,y but if there is some xy with u(zg) # 0 then via continuity we have u of a fixed sign and
bounded away from 0 on some interval [z, y] and this leads to a contradiction.

We consider u the corresponding eigenfunction,

1 / " (bt = xu(z). (15)

T

The left-hand side of the equality is continuously differentiable on (0,1]. So we conclude that u €
C((0,1]). Multiplying by = and taking the derivative on both sides (and doing the product rule) yields

w(z) = du(x) + v/ (). (16)
Integrating this differential equation yields

-1 1
u(z) =Cx™®, with a= Al (i.e., A= > ) (17)

A l-—a
where C' € R. The condition that u € C*((0,1]) implies o < 0, which further constraints \. We have
0<A<L (18)

Reciprocally, if A € (0, 1], then Cxz~ 11/ is an eigenfunction associated with the eigenvalue \.

From (10), we have || T'||z(r) < 1, and the bound is achieved for u(t) = 1 or for any eigenfunction with
eigenvalue \ = 1.

Problem 4 (20 points) Let X and Y be normed linear spaces, and T': X — Y a bounded linear trans-
formation. Define the transpose TT : Y* — X* as the map that sends any ¢ € Y* to the linear functional

Thg=

def

poT € X* ie., (TT¢)(x) = ¢(Tx)Vx € X. Note that T is also a bounded linear transformation.

Let X and Y be Banach spaces, and suppose T is injective and has closed range. Prove that 7" is surjective.
Hint: you may wish to use major theorems, including the Hahn-Banach theorem.



Solution: Because X and Y are Banach, we know by the open mapping theorem that since T is injective
and has closed range, that there exists a constant ¢ > 0 such that (Vz € X)c||z|| < ||Tx||. (This is the exact
statement of Prop. 5.30 in Hunter and Nachtergaele, and follows quite easily from the open mapping
theorem since ran(7) is also a Banach space, so T~! : ran(T') — X is bounded).

Now to show that TT is surjective, let ¢» € X*, and we want to find ¢ € Y* such that ¢p = T ¢, ie.,
1 = ¢ oT. Our plan will be to define such a ¢, at least on ran(T). So let y € ran(T), with y = Tz. Then

define ¢(y) = ¢ (x), which is well-defined since z is unique because T is injective. Then it’s easy to see ¢ is
linear since ¢ and T are linear. Furthermore, ¢ is bounded, since ||z|| < ¢7!||y|| so |¢(y)| < c7H|[¥|||ly|| (this
is where we used the open-mapping result).

We've defined ¢ on ran(7T) C Y, but we need ¢ defined on all of ¥ so that we can claim ¢ € Y*. By using
the Hahn-Banach theorem, we know some extension of ¢ defined on all of Y must exist; with slight abuse
of notation, we’ll also refer to this extension as ¢. The actual values of ¢ on Y \ ran(T) are not important
since they do not affect T'T¢; all that matters is that ¢ is still bounded and linear. Hence ¢ = T'T ¢ as
desired, meaning T'" is surjective.

Problem 5 (20 points) Let F be the inner-product space of complex-valued continuous functions on [0, 1],
equipped with the inner product
1
9= [ rwgma (19)
0

and the corresponding norm, || - ||2. Let Ey be the subspace of E composed of functions f with zero-mean,

/ f(t) =0. (20)
0

We consider the following inner-product spaces H and Hy defined respectively by

H={feFE;f(1)=0}, and HoonﬂH:{ € E; f(1 /f } (21)

(a) Prove that Hy is a proper closed subspace of H.
(b) Let f1 € Ey defined by

Ve (0,1, f(t)=t— % (22)

i. Prove that E is equal to the vector space spanned by f; and H.
ii. Prove that Fj is equal to the vector space spanned by f; and Hy.

iii. Prove that f; is an element of the closure, Hy, of Hy in E.
Hint: you might construct a sequence of functions u, € Hy, such that lim, . ||f1 —un|2 = 0. You
need not provide an explicit formula for (u,) as long as it is clear they have the desired property.

(c) Let Hi- be the orthogonal complement of Hy in H. Let g € Hg, and let u, € Hp, such that
limy,, 00 || f1 — tnll2 = 0. Prove that

/ it dt\ < Ifs = unlls e (23)

Conclude that (fi,g) = 0.
(d) Show Hg = Eg (where Ej is the orthogonal complement of Fy in E).
(e) Show that Ej- contains only constant functions, and then show Hg = {0}.

(f) Reconcile the apparent contradiction created by combining (a) and (e). To wit,
Hi & Hy = Hy # H. (24)

Solution:



(a)

(b)

(c)

Hj is the kernel (null space) of the bounded linear operator A defined by

Af =(f, fo) where Vte[0,1], fo(t)=1. (25)
Cauchy-Schwarz yields
[Af = I(F Sl <l foll2llfllz = I £]l2 (26)
where we have used || fy||l2 = 1. We conclude that A is bounded and therefore continuous; its null space
is therefore a closed subset of H. It is proper, since ||A| = 1.

Alternative proof: That Hy is a subspace is trivial; that it is proper can be seen by example, such
as using g(t) = 1 — ¢ which is in H \ Hy. To show it is closed, one option is to use sequential continuity.
Let (fn) C Hp be a convergent sequence with limit f € H, i.e., || f — fn]l2 = 0. Note: we assume f € H
since we asked if Hy is a closed subspace of H. So we must show f € Ey. To show f € Ey,

‘/f [+ [u=s|=| [ 1

where fj is defined as in the earlier solution; and as before, this follows from Cauchy-Schwarz. Hence
we can make [ f arbitrarily close to 0, so it must be 0, hence f € Ey. You may be tempted to show
[ f =0 Dby using (f,) and Fatou’s lemma (namely, [ f = [lim f, < liminf [ f, = 0, and similarly
[—f=...<0), but you'd need to show that ||f — f,||2 — 0 implies pointwise convergence; this is false
in L? but may be true in E though it’d be a bit of work to show it.

i. Let f € E, consider the function h defined by

< N foll2llf = fall2

h=f=2f(1)f (27)
Clearly h € H, h(1) = f(1) —2f(1)f1(1) = f(1) — f(1) = 0. We conclude that
Vfe E,3he H, f=2f()f1+h. (28)

To wit, E is the vector space formed by the span of f; and H.
ii. Now, the mean of f; over [0, 1] is zero, that is f; is in Ey. But (27) implies that in this case, h
also has zero-mean and thus h € H N Ey = Hy. In summary, if f € Ey, (28) implies that Fy is the
vector space formed by the span of f; and Hy.
iii. Consider the sequence u, that matches f; on [1/n, 1 —1/n], and has a continuous linear extension
on [0,1/n] and [1 — 1/n, 1], given by
(1—-%)t if t € [0,1/n],
un () = ¢ f1(t) ifte[l/n, 1—1/n], (29)
(1-2)(t-1) ifte[l—1/n,1].
The convergence of u,, to fi is a consequence of the following simple computation
1
— Uplla = —.
I = alo = —=

Finally, we can check that by construction u, (1) = 0 and u,, is zero-mean, so u,, € Hy. We conclude
that the limit of u,,, fi, is in Hy.

Let g € Hy-. The idea is to hit f; — u, against g, and pass to the limit. We have

/0 fi(t)g(t)dt

where we have used the fact that (u,,g) = 0 to get to the second term, and Cauchy-Schwarz yields the
last inequality. Now because of (30), we conclude that

(30)

A<moﬂammm49m—%mmm (31)

Vn €N, /0 1 fl(t)g(t)dt‘ < lgllz (32)

6n

in other words,

1
/O fi(t)g(t)dt = 0. (33)



(d) Because Hy is a subspace of Ey, we have E- C Hg-. Now let g € Hg, and let g € Ey. Because Ej is
the span of f; and Hy, there exist a € C and hg € Hy such that,

g =afi+ ho. (34)

Because (g, ho) =0 (g € Hy") and (g, f1) = 0 (see previous question), we conclude that

(g,g):<g,af1+ho>=5<g,f1>+<g,ho>=0 (35)

We conclude that g € Ed‘, and thus Ef- = Hy .

(e) We know that Ey = {fO}J‘, so Ef- = span {fo} = span {fy}, where all the orthogonal complements are
taken in E. Therefore, Ei- contains only constant function.

Let g € Hy, then g € Hy- C H, since Hy is the orthogonal complement of Hy in H, and thereforee
g(1) = 0. Now, g € Ey- = Hy, and thus g is constant, so g(t) = g(1) = 0, and we conclude that g = 0.
In summary, Hs- = {0}.

i.

ii.

Alternative proof that g € EOl is constant. For shorthand, let u = (g, fo) be the mean, and
go = g — ufo as above. Then

lgoll?> = (g — wfo, 9 — 1fo) = (9,9 — 1fo) — (1ufo, g — nfo) = —(ufo. 9 — pfo)

since (g,g — pfo) = 0 because g — ufo € Ep and g € Ei-. Thus

lgoll* = —(pfo, g = wufo) = [P foll* = u(fo, 9) = |pl* = ul* = 0

hence gop = 0, i.e., g is a constant function (it doesn’t deviate from its mean).

Second alternative proof that g € Ej is constant. We define gy to be the function g centered
around its mean,

1
=g~ [ a0t~ g (9. fo) o (36)
0
where we recall, that fo(t) = 1,V¢ € [0,1]. By construction, gy € Eo. Since g € Ey-, we have
0= (g,90) = (9.9 — (g, fo) fo) = lall3 = [, fo)I* = llglI3 Il foll3 — (g fo)I*- (37)
In short, ,
lgll3 170113 = (g, fo)l " (38)

We recognize the form of Cauchy-Schwartz, when the two vectors g and fj are colinear. We conclude
that g is constant.

(f) The apparent contradiction stems from the fact that we work within a pre-Hilbert space, H. But H is
not complete, so it is not a Hilbert space. Despite the fact that Hy- = {0}, we only have

Hy=Ho # H. (39)

For instance f(t) =1 —t is in H, but not in Hy.



