
Applied Analysis Preliminary Exam (Hints/solutions)
9:00 AM – 12:00 PM, August 17, 2021

Instructions You have three hours to complete this exam. Work all five problems; there are no optional
problems. Each problem is worth 20 points. Please start each problem on a new page. Please clearly indicate
any work that you do not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST
prove your conclusions or show a counter-example for all problems unless otherwise noted. In your proofs,
you may use any major theorem on the syllabus or discussed in class, unless you are directly proving such a
theorem (when in doubt, ask the proctor). If you cannot finish part of a question, you may wish to move on
to the next part; problems are graded with partial credit. Write your student number on your exam,
not your name.

Problem 1 (20 points) The following two problems are unrelated.

(a) Let r ∈ R3 and E(r) = q
4πε0

1
r3 r be a vector field where r = ‖r‖2, and q and ε0 are constants; you may

recognize this as the electric field due to a charge q at the origin. By using the formula for the surface
area of a sphere, observe that ‹

S

E · n̂ dS = q

ε0

if S is a sphere of radius R > 0 (no work necessary on your part). Show that in fact this equation holds
for any bounded, smooth closed surface S that encloses the origin (this is a simple version of Gauss’
law). Hint: is E divergence-free in some regions?

Solution: Let S be our closed surface, and SR be the sphere of radius R, and let V be the volume
enclosed between S and SR. To be very careful, let’s ensure that S and SR do not intersect; since S is
bounded, simply choose R sufficiently large so that it completely encloses S.

Also note that (∇ · E)(r) = 0 for all r 6= 0 since divergence in spherical coordinates can be written

∇ · E = 1
r2

∂

∂r
(r2Er) + 1

r sinφ
∂

∂φ
(sinφEφ) + 1

r sinφ
∂Eθ
∂θ

where (Er, Eφ, Eθ) represent E in spherical coordinates. In our case, Er ∝ r−2 and Eφ = Eθ = 0,
hence ∇ · E = 0. You can also calculate the divergence directly in Cartesian coordinates if you wish:
∇ · E = ∂Ex

∂x + ∂Ey

∂y + ∂Ez

∂z with Ex = x/r3 and ∂Ex

∂x = r3−3x2r
r6 when r 6= 0, and similarly for Ey and

Ez, so when the partials are added together, they exactly cancel and give ∇ · E = 0.
Since V does not contain the origin,

˚
V

∇ · E dV =
˚

V

0 = 0

and on the other hand, by the divergence theorem,
˚

V

∇ · E dV =
‹
∂V

E · n̂ dS

=
‹
SR

E · n̂ dS −
‹
S

E · n̂ dS

= q

ε0
−
‹
S

E · n̂ dS

hence we conclude
‚
S

E · n̂ dS = q
ε0
.

(b)
i. For every n ∈ Z, show there is a unique solution α ∈ (−π/2, π/2] solving the equation cos(α) = n

3
2α.

In the interest of time, you may give details for n = 1 and just a quick proof sketch for all other n.
Solution: For n = 0, the unique solution is α = π/2 by inspection. Note that n 3

2 does not
have a well-defined real value if n < 0, so the question should have read cos(α) = |n| 32α.
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For n = ±1, we are solving the fixed point equation F (α) = α for F (α) def= ±1 cos(α). We’ll
show n = +1 in detail but n = −1 is very similar. Note: for n = 1, this is known as the Dottie
number, and is a transcendental number near 0.739085.

Note F (α) ≥ 0 for all α ∈ (−π/2, π/2], hence we can exclude α < 0 as a solution; similarly,
we can exclude α > 1, and thus focus on α ∈ [0, 1]. Note F (0) = 1 and F (1) ≈ 0.54 and F ′ is
monotonically decreasing in [0, π/2], so F maps [0, 1] into [0, 0.54], and F is continuous, so therefore
we can apply the contraction mapping theorem (aka Banach fixed point theorem) if we
can show F is a contraction. This is straightforward since |F ′(α)| = | sin(α)| ≤ sin(1) < 1 for
α ∈ [0, 1] (note that just showing |F ′(α)| < 1 is not quite the same thing, as we need a uniform
bound away from 1 to be a contraction). Note: there are other numbers you can use for this, e.g.
observe cos([0, 1]) ⊂ cos([0, π/3]) = [0, 1

2 ] and sin([0, 1
2 ]) ⊂ sin([0, π/6]) = [0, 1

2 ]).
For |n| ≥ 2, the argument is similar, applied to the fixed-point equation F (α) = α with F (α) def=

1
n

3
2

cos(α), which is continuous, and maps [0, 1] into [0, 1] (or [−1, 0] into [−1, 0] if n < 0), and has
−1
n

3
2

sin(α) as its derivative so is clearly a contraction.
Comment: using the intermediate value theorem for continuous functions only guarantees

existence, not uniqueness, so that was not a valid solution to this question, unless you added an
argument about strict monotonicity of the root-finding problem.

ii. Let αn be the unique solution in (−π/2, π/2] to the equation cos(α) = n
3
2α. Define the function

f(x) =
∑
n∈Z

αn cos(nx).

Prove f is a continuous function. Hint: what do you know about growth/decay of αn?
Solution: The equation is the Fourier series representation of f , with Fourier coefficients

|f̂n| . n−
3
2 (they are not exactly n− 3

2 since this is the cosine series rather than with einx, and since
we don’t have an explicit expression for αn). All we need from αn is that it is bounded by n− 3

2 ; the
fact that we don’t have an explicit expression for it means that you likely cannot find a closed-form
expression for f and use that to determine continuity.

Then observe that
∑
n |n|2k|f̂n|2 .

∑
n |n|2k−3 is finite if 2k − 3 < −1, i.e., if k < 1. Thus f

is in the kth Sobolev space on the torus, Hk(T), for k < 1. In particular, this is true for k = 3
4 .

Thus by the Sobolev embedding theorem, since k > 1
2 , it follows f is continuous. Careful: it

is not necessarily true that f ∈ H1(T).
Comment: most attempts to prove continuity directly don’t work. For example, if you derive

|f(x)− f(y)| ≤
∑
n∈Z αn ·n · |x− y| (which follows from sequential continuity of the absolute value

function, the triangle inequality, and the fact that cos(nx) is Lipschitz continuous with constant n),
the fact that αn . n−

3
2 isn’t enough to make this a convergent series, since

∑
n−

1
2 ≥

∑
n−1 =∞.

You can look at the partial sums and show uniform convergence (which would imply f is continuous,
since the uniform limit of continuous functions is continuous), but if you do this, you’re essentially
reproving the Sobolev embedding theorem (see Lemma 7.8 in Hungter & Nachtergaele).

Problem 2 (20 points) Let F = C([0, 1]) be the Banach space of continuous real-valued functions on [0, 1]
equipped with the sup-norm, ‖ · ‖∞, and let G = C1([0, 1]) be the Banach space of real-valued continuously
differentiable functions on [0, 1] equipped with the norm

‖f‖C1 = ‖f‖∞ + ‖f ′‖∞. (1)

(a) Prove that ‖f‖C1 defined by (1) is a norm on G.
(b) We note that G ⊂ F , and we consider the canonical injection

I : (G, ‖ · ‖C1) −→ (F, ‖ · ‖∞) (2)
f 7−→ f (3)

Prove that I is a compact operator. Hint: you might consider using the Arzelà-Ascoli theorem.

Solution:
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(a) We have to check that ‖ · ‖C1 satisfies the three axioms that define a norm.
• If f = 0 then clearly ‖f‖∞ = 0, whence it follows that f = 0.
• We now prove the triangular inequality.

‖f + g‖C1 =‖f + g‖∞ + ‖f ′ + g′‖∞ (4)
≤‖f‖∞ + ‖g‖∞ + ‖f ′‖∞ + ‖g′‖∞ (5)
≤‖f‖C1 + ‖g‖C1 . (6)

• The third axiom is obvious.
Hence ‖ · ‖ is a norm.

(b) We wish to prove that I is a compact operator. Let K be the unit ball of G (for the norm ‖ · ‖C1),
we need to prove that I(K) is precompact (relatively compact) in F . To do this we use Ascoli-Arzelà
theorem. The subset I(K) is precompact in F if and only if it is bounded and equicontinuous.

• I (K) is bounded. Clearly, if f ∈ K, we have ‖f‖C1 ≤ 1 by definition of K, and thus

‖I(f)‖∞ = ‖f‖∞ ≤ ‖f‖c1 ≤ 1. (7)

We conclude that I (K) is bounded in F .
• I (K) is equicontinuous. Let f ∈ K, by the same argument as above we have ‖f ′‖∞ ≤ 1 by

definition of ‖ · ‖C1 . Therefore,

∀x, y ∈ [0, 1], |f(x)− f(y)| ≤ sup
z∈[0,1]

|f ′(z)||x− y| ≤ |x− y| (8)

and thus I (K) is equicontinuous.
We conclude that I (K) is precompact, and therefore I is a compact operator.

Problem 3 (20 points) Let F = C([0, 1]) be the Banach space of continuous real-valued functions on [0, 1]
equipped with the sup-norm, ‖ · ‖∞. Let u ∈ F , and define the function Tu on [0, 1] by

Tu(x) =


1
x

ˆ x

0
u(t)dt if x ∈ (0, 1],

u(0) if x = 0.
(9)

(a) Prove that Tu ∈ F , and that
∀u ∈ F, ‖Tu‖ ≤ ‖u‖. (10)

Conclude that T belongs to B(F ).
(b) Prove that the point spectrum (eigenvalues) of T is equal to (0, 1]. Determine the corresponding

eigenfunctions.
(c) Prove that ‖T‖B(F ) = 1.

Solution:

(a) The continuity of Tu at all x > 0 is clear (it’s the product of continuous functions). Now we focus on
proving it is continuous at 0. We note that if x > 0

Tu(x) = 1
x

ˆ x

0
u(t)dt =

ˆ 1

0
u(xt)dt, (11)

whence it follows that
lim
x→0

Tu(x) =
ˆ 1

0
u(0)dt = u(0). (12)

for the following reason: noting |u| is bounded by g(x) = ‖u‖∞ < ∞, define ux = u(xt), then for all
x ≤ 1, (∀t ∈ [0, 1]) |ux(t)| ≤ g(t) and g is integrable over [0, 1], hence we can interchange the limit and
the integral using Lebesgue’s Dominated Convergence Theorem.
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Alternative 1: for any x > 0, using u(0) = 1
x

´ x
0 u(0) dt,

∣∣(Tu)(x)− u(0)
∣∣ =

∣∣∣∣ 1x
ˆ x

0
u(t)− u(0)dt

∣∣∣∣ ≤ 1
x

ˆ x

0
|u(t)− u(0)| dt ≤ sup

t≤x
|u(t)− u(0)|,

which can be made arbitrarily small by choosing x arbitrarily small (due to the continuity of u).
Alternative 2: note that limx→0

1
x

´ x
0 u(t) dt is of the form 0/0, i.e., limx→0

f(x)
g(x) with f(x) =´ x

0 u(t) dt and g(x) = x. As f and g are differentiable, and as the limit limx→0
f ′(x)
g′(x) = limx→0

u(x)
1 =

u(0) exists (via the Fundamental Theorem of Calculus), we can use L’Hôpital’s rule to conclude
limx→0(Tu)(x) = u(0).

To show boundedness, clearly |Tu(0)| ≤ ‖u‖∞, and if x 6= 0,

|Tu(x)| ≤
ˆ 1

0
‖u‖∞dt = ‖u‖∞, (13)

and thus
‖Tu‖∞ ≤ ‖u‖∞. (14)

We conclude that T is a bounded, and (since it’s clearly linear) therefore continuous, operator from F
to itself.

(b) Let λ be an eigenvalue. First, we can show that λ 6= 0 because if u is the corresponding eigenfunction
and T (u) ≡ 0 then u(0) = 0 and

´ x
0 u(t) dt = 0 for all x ∈ [0, 1], so defining F (x) =

´ x
0 u(t) dt, we have

F (x) = 0, hence F ≡ 0, hence F ′ ≡ 0, but by the fundamental theorem of calculus, which applies
since u is continuous, we have F ′ = u (as continuous derivatives are unique), hence u ≡ 0, meaning
that by definition λ = 0 is not an eigenvalue. Alternatively, to prove u ≡ 0 if λ = 0, note

´ x
y
u(t) dt = 0

for all x, y but if there is some x0 with u(x0) 6= 0 then via continuity we have u of a fixed sign and
bounded away from 0 on some interval [x, y] and this leads to a contradiction.

We consider u the corresponding eigenfunction,

1
x

ˆ x

0
u(t)dt = λu(x). (15)

The left-hand side of the equality is continuously differentiable on (0, 1]. So we conclude that u ∈
C1((0, 1]). Multiplying by x and taking the derivative on both sides (and doing the product rule) yields

u(x) = λu(x) + λxu′(x). (16)

Integrating this differential equation yields

u(x) = Cx−α, with α = λ− 1
λ

(
i.e., λ = 1

1− α

)
, (17)

where C ∈ R. The condition that u ∈ C1((0, 1]) implies α < 0, which further constraints λ. We have

0 < λ ≤ 1. (18)

Reciprocally, if λ ∈ (0, 1], then Cx−1+1/λ is an eigenfunction associated with the eigenvalue λ.
(c) From (10), we have ‖T‖L(F ) ≤ 1, and the bound is achieved for u(t) = 1 or for any eigenfunction with

eigenvalue λ = 1.

Problem 4 (20 points) Let X and Y be normed linear spaces, and T : X → Y a bounded linear trans-
formation. Define the transpose T> : Y ∗ → X∗ as the map that sends any φ ∈ Y ∗ to the linear functional
T>φ

def= φ ◦ T ∈ X∗, i.e., (T>φ)(x) = φ(Tx)∀x ∈ X. Note that T> is also a bounded linear transformation.
Let X and Y be Banach spaces, and suppose T is injective and has closed range. Prove that T> is surjective.
Hint: you may wish to use major theorems, including the Hahn-Banach theorem.
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Solution: Because X and Y are Banach, we know by the open mapping theorem that since T is injective
and has closed range, that there exists a constant c > 0 such that (∀x ∈ X) c‖x‖ ≤ ‖Tx‖. (This is the exact
statement of Prop. 5.30 in Hunter and Nachtergaele, and follows quite easily from the open mapping
theorem since ran(T ) is also a Banach space, so T−1 : ran(T )→ X is bounded).
Now to show that T> is surjective, let ψ ∈ X∗, and we want to find φ ∈ Y ∗ such that ψ = T>φ, i.e.,
ψ = φ ◦ T . Our plan will be to define such a φ, at least on ran(T ). So let y ∈ ran(T ), with y = Tx. Then
define φ(y) def= ψ(x), which is well-defined since x is unique because T is injective. Then it’s easy to see φ is
linear since ψ and T are linear. Furthermore, φ is bounded, since ‖x‖ ≤ c−1‖y‖ so |φ(y)| ≤ c−1‖ψ‖‖y‖ (this
is where we used the open-mapping result).
We’ve defined φ on ran(T ) ⊂ Y , but we need φ defined on all of Y so that we can claim φ ∈ Y ∗. By using
the Hahn-Banach theorem, we know some extension of φ defined on all of Y must exist; with slight abuse
of notation, we’ll also refer to this extension as φ. The actual values of φ on Y \ ran(T ) are not important
since they do not affect T>φ; all that matters is that φ is still bounded and linear. Hence ψ = T>φ as
desired, meaning T> is surjective.

Problem 5 (20 points) Let E be the inner-product space of complex-valued continuous functions on [0, 1],
equipped with the inner product

〈f, g〉 =
ˆ 1

0
f(t)g(t)dt, (19)

and the corresponding norm, ‖ · ‖2. Let E0 be the subspace of E composed of functions f with zero-mean,
ˆ 1

0
f(t) = 0. (20)

We consider the following inner-product spaces H and H0 defined respectively by

H = {f ∈ E; f(1) = 0} , and H0 = E0 ∩H =
{
f ∈ E; f(1) =

ˆ 1

0
f(t)dt = 0

}
. (21)

(a) Prove that H0 is a proper closed subspace of H.
(b) Let f1 ∈ E0 defined by

∀t ∈ [0, 1], f1(t) = t− 1
2 . (22)

i. Prove that E is equal to the vector space spanned by f1 and H.
ii. Prove that E0 is equal to the vector space spanned by f1 and H0.
iii. Prove that f1 is an element of the closure, H0, of H0 in E.

Hint: you might construct a sequence of functions un ∈ H0, such that limn→∞ ‖f1−un‖2 = 0. You
need not provide an explicit formula for (un) as long as it is clear they have the desired property.

(c) Let H⊥0 be the orthogonal complement of H0 in H. Let g ∈ H⊥0 , and let un ∈ H0, such that
limn→∞ ‖f1 − un‖2 = 0. Prove that∣∣∣∣ˆ 1

0
f1(t)g(t)dt

∣∣∣∣ ≤ ‖f1 − un‖2 ‖g‖2. (23)

Conclude that 〈f1, g〉 = 0.
(d) Show H⊥0 = E⊥0 (where E0 is the orthogonal complement of E0 in E).
(e) Show that E⊥0 contains only constant functions, and then show H⊥0 = {0}.
(f) Reconcile the apparent contradiction created by combining (a) and (e). To wit,

H⊥0 ⊕H0 = H0 6= H. (24)

Solution:
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(a) H0 is the kernel (null space) of the bounded linear operator A defined by

Af = 〈f, f0〉 where ∀t ∈ [0, 1], f0(t) = 1. (25)

Cauchy-Schwarz yields
|Af | = |〈f, f0〉| ≤ ‖f0‖2‖f‖2 = ‖f‖2 (26)

where we have used ‖f0‖2 = 1. We conclude that A is bounded and therefore continuous; its null space
is therefore a closed subset of H. It is proper, since ‖A‖ = 1.

Alternative proof : That H0 is a subspace is trivial; that it is proper can be seen by example, such
as using g(t) = 1− t which is in H \H0. To show it is closed, one option is to use sequential continuity.
Let (fn) ⊂ H0 be a convergent sequence with limit f ∈ H, i.e., ‖f − fn‖2 → 0. Note: we assume f ∈ H
since we asked if H0 is a closed subspace of H. So we must show f ∈ E0. To show f ∈ E0,∣∣∣∣ˆ f

∣∣∣∣ =
∣∣∣∣ˆ fn +

ˆ
(f − fn)

∣∣∣∣ =
∣∣∣∣ˆ (f − fn)

∣∣∣∣ ≤ ‖f0‖2‖f − fn‖2

where f0 is defined as in the earlier solution; and as before, this follows from Cauchy-Schwarz. Hence
we can make

´
f arbitrarily close to 0, so it must be 0, hence f ∈ E0. You may be tempted to show´

f = 0 by using (fn) and Fatou’s lemma (namely,
´
f =

´
lim fn ≤ lim inf

´
fn = 0, and similarly´

−f = . . . ≤ 0), but you’d need to show that ‖f −fn‖2 → 0 implies pointwise convergence; this is false
in L2 but may be true in E though it’d be a bit of work to show it.

(b) i. Let f ∈ E, consider the function h defined by

h = f − 2f(1)f1. (27)

Clearly h ∈ H, h(1) = f(1)− 2f(1)f1(1) = f(1)− f(1) = 0. We conclude that

∀f ∈ E,∃h ∈ H, f = 2f(1)f1 + h. (28)

To wit, E is the vector space formed by the span of f1 and H.
ii. Now, the mean of f1 over [0, 1] is zero, that is f1 is in E0. But (27) implies that in this case, h

also has zero-mean and thus h ∈ H ∩E0 = H0. In summary, if f ∈ E0, (28) implies that E0 is the
vector space formed by the span of f1 and H0.

iii. Consider the sequence un that matches f1 on [1/n, 1− 1/n], and has a continuous linear extension
on [0, 1/n] and [1− 1/n, 1], given by

un(t) =


(
1− n

2
)
t if t ∈ [0, 1/n],

f1(t) if t ∈ [1/n, 1− 1/n],(
1− n

2
)

(t− 1) if t ∈ [1− 1/n, 1].
(29)

The convergence of un to f1 is a consequence of the following simple computation

‖f1 − un‖2 = 1√
6n
. (30)

Finally, we can check that by construction un(1) = 0 and un is zero-mean, so un ∈ H0. We conclude
that the limit of un, f1, is in H0.

(c) Let g ∈ H⊥0 . The idea is to hit f1 − un against g, and pass to the limit. We have∣∣∣∣ˆ 1

0
f1(t)g(t)dt

∣∣∣∣ =
∣∣∣∣ˆ 1

0
(f1(t)− un(t)) g(t)dt

∣∣∣∣ ≤ ‖f1 − un‖2 ‖g‖2 (31)

where we have used the fact that 〈un, g〉 = 0 to get to the second term, and Cauchy-Schwarz yields the
last inequality. Now because of (30), we conclude that

∀n ∈ N,
∣∣∣∣ˆ 1

0
f1(t)g(t)dt

∣∣∣∣ ≤ ‖g‖2√
6n
. (32)

in other words, ˆ 1

0
f1(t)g(t)dt = 0. (33)
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(d) Because H0 is a subspace of E0, we have E⊥0 ⊂ H⊥0 . Now let g ∈ H⊥0 , and let g ∈ E0. Because E0 is
the span of f1 and H0, there exist α ∈ C and h0 ∈ H0 such that,

g = αf1 + h0. (34)

Because 〈g, h0〉 = 0 (g ∈ H⊥0 ) and 〈g, f1〉 = 0 (see previous question), we conclude that

〈g, g〉 = 〈g, αf1 + h0〉 = α〈g, f1〉+ 〈g, h0〉 = 0. (35)

We conclude that g ∈ E⊥0 , and thus E⊥0 = H⊥0 .
(e) We know that E0 = {f0}⊥, so E⊥0 = span {f0} = span {f0}, where all the orthogonal complements are

taken in E. Therefore, E⊥0 contains only constant function.

Let g ∈ H⊥0 , then g ∈ H⊥0 ⊂ H, since H⊥0 is the orthogonal complement of H0 in H, and thereforee
g(1) = 0. Now, g ∈ E⊥0 = H⊥0 , and thus g is constant, so g(t) = g(1) = 0, and we conclude that g = 0.
In summary, H⊥0 = {0}.

i. Alternative proof that g ∈ E⊥0 is constant. For shorthand, let µ = 〈g, f0〉 be the mean, and
g0 = g − µf0 as above. Then

‖g0‖2 = 〈g − µf0, g − µf0〉 = 〈g, g − µf0〉 − 〈µf0, g − µf0〉 = −〈µf0, g − µf0〉

since 〈g, g − µf0〉 = 0 because g − µf0 ∈ E0 and g ∈ E⊥0 . Thus

‖g0‖2 = −〈µf0, g − µf0〉 = |µ|2‖f0‖2 − µ〈f0, g〉 = |µ|2 − |µ|2 = 0

hence g0 = 0, i.e., g is a constant function (it doesn’t deviate from its mean).
ii. Second alternative proof that g ∈ E⊥0 is constant. We define g0 to be the function g centered

around its mean,

g0 = g −
ˆ 1

0
g(t)dt,= g − 〈g, f0〉f0, (36)

where we recall, that f0(t) = 1,∀t ∈ [0, 1]. By construction, g0 ∈ E0. Since g ∈ E⊥0 , we have

0 = 〈g, g0〉 = 〈g, g − 〈g, f0〉f0〉 = ‖g‖2
2 − |〈g, f0〉|2 = ‖g‖2

2 ‖f0‖2
2 − |〈g, f0〉|2 . (37)

In short,
‖g‖2

2 ‖f0‖2
2 = |〈g, f0〉|2 . (38)

We recognize the form of Cauchy-Schwartz, when the two vectors g and f0 are colinear. We conclude
that g is constant.

(f) The apparent contradiction stems from the fact that we work within a pre-Hilbert space, H. But H is
not complete, so it is not a Hilbert space. Despite the fact that H⊥0 = {0}, we only have

H0 = H0 6= H. (39)

For instance f(t) = 1− t is in H, but not in H0.
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